2 research outputs found
Recommended from our members
Observing recommendations for JWST MIRI users
The Mid-Infrared Instrument (MIRI), a result of the collaborative work of a consortium of European and US institutes, is the only Mid-IR science instrument on the James Webb Space Telescope (JWST). The combination of MIRIs sensitivity and angular resolution over the 5-28.5 ”m wavelength range will enable investigations into many different science topics, ranging from the local to the high-redshift Universe. The MIRI team has defined and published a set ofâRecommended Strategiesâ to help observers optimally plan and execute their science programs. Some of these recommendations are generic and applicable to any science case; others are tailored to specific observing modes. Here we summarize key generic recommendations for MIRI observers, with emphasis on detector usage. All this information is available to observers as part of the James Webb Telescope Userâs Documentation System and will be updated as needed
The Mid-infrared Instrument for JWST and Its In-flight Performance
The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 ÎŒm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Îλ ⌠100â3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.</p