143 research outputs found

    Core binding factor leukemia hijacks T-cell prone PU.1 antisense promoter [preprint]

    Get PDF
    The blood system serves as a key model for cell differentiation and cancer. It is orchestrated by precise spatiotemporal expression of the hematopoietic master regulator PU.11–4. PU.1 gene expression is regulated through enhancer-promoter interactions within a topologically associated domain (TAD)5,6. PU.1 levels increase during myeloid differentiation while failure to do so results in myeloid leukemia7. In contrast, T-cell differentiation requires PU.1 to be completely switched off8–10. Little is known about the precise mechanisms of PU.1 repression, physiological as in T-cell differentiation, or pathological as in leukemia. Here we demonstrate that the down-regulation of PU.1 mRNA is a dynamic process involving an alternative promoter11 in intron 3 that is induced by RUNX transcription factors driving noncoding antisense transcription. Core binding factor (CBF) fusions, RUNX1-ETO and CBFβ-MYH11 in t(8;21) and inv(16) acute myeloid leukemia (AML)12, activate the PU.1 antisense promoter, thus shifting from sense towards antisense transcription and blocking myeloid differentiation. In patients with CBF-AML, we found that an elevated antisense/sense ratio represents a hallmark compared to normal karyotype AML or healthy CD34+ cells. Competitive interaction of the enhancer with the proximal or the antisense promoter are at the heart of differential PU.1 expression during myeloid and T-cell development. Leukemic CBF fusions thus utilize a physiologic mechanism employed by T-cells to decrease sense PU.1 transcription. Our results identify the first example of a sense/antisense promoter competition as a crucial functional switch for gene expression perturbation by oncogenes. This novel basic disease mechanism reveals a previously unknown Achilles heel for future precise therapeutic targeting of oncogene-induced chromatin remodeling

    Incremental QBF Solving

    Full text link
    We consider the problem of incrementally solving a sequence of quantified Boolean formulae (QBF). Incremental solving aims at using information learned from one formula in the process of solving the next formulae in the sequence. Based on a general overview of the problem and related challenges, we present an approach to incremental QBF solving which is application-independent and hence applicable to QBF encodings of arbitrary problems. We implemented this approach in our incremental search-based QBF solver DepQBF and report on implementation details. Experimental results illustrate the potential benefits of incremental solving in QBF-based workflows.Comment: revision (camera-ready, to appear in the proceedings of CP 2014, LNCS, Springer

    Product innovation and population dynamics in the German insurance market

    Full text link
    Empirical research in organizational ecology has mainly focused on analyzing founding and mortality rates using life history data of the organizations. We try to extend this approach in our study in a number of ways. In contrast to most empirical studies in organizational ecology, we chose a population of service organizations, in particular the German insurance companies, the development dynamics of which are rather obvious in the innovative activities of existing organizations than in founding activities. We further discuss the points of contact between the organizational ecology approach and the theory of industry life cycles and extend the analysis to the relationship between innovative activities and population dynamics. The study examines the effects of population density, former events, and organizational size and age structure in the population of property & casualty insurance companies on the number of product innovations generated. We will further develop a concept for an insurance specific industry life cycle with a non-typical maturation and degeneration phase
    corecore