16 research outputs found

    Soluble aromatic polyimides for film and coating applications

    Get PDF
    Linear all-aromatic polyimides have been synthesized and characterized which show much potential as films and coatings for electronic applications. Structure-property relations with regard to methods for obtaining solubility of fully imidized polymers will be discussed. Methods used to obtain solubility include variation of polymer molecular structure, variation of isomerism of the diamine monomer, modification of cure time/temperature and atmosphere. Other properties of soluble polyimides will be presented which include glass transition temperatures, thermooxidative stabilities, UV-visible spectra, and refractive indices

    Aromatic polyimides containing a dimethylsilane-linked dianhydride

    Get PDF
    A high-temperature stable, optically transparent, low dielectric aromatic polyimide is prepared by chemically combining equimolar quantities of an aromatic dianhydride reactant and an aromatic diamine reactant, which are selected so that one reactant contains at least one Si(CH3)2 group in its molecular structure, and the other reactant contains at least one -CF3 group in its molecular structure. The reactants are chemically combined in a solvent medium to form a solution of a high molecular weight polyamic acid, which is then converted to the corresponding polyimide

    Polyimides prepared from 3,5-diamino benzo trifluoride

    Get PDF
    High performance, thermooxidatively stable polyimides are prepared by reacting aromatic diamines with pendant trifluoromethyl groups and dianhydrides in an amide solvent to form a poly(amic acid), followed by cyclizing the poly(amic acid) to form the corresponding polyimide

    A Process for Preparing 1,3-Diamino-5-Pentafluorosulfanylbenzene and Polymers Therefrom

    Get PDF
    Diamines have shown their utility in the formation of many polymers. Examples of these polymers include polyimides, polyamides, and epoxies. The properties of these polymers are often dependent on the diamine which is used to make the polymer. By the present invention, a process was developed to make a diamine containing pentafluorosulfanylbenzene moiety. This process involves two steps: the preparation of a dinitro precursor and the reduction of the dinitro compound to form the diamine. This diamine was then reacted with various dianhydrides, diacidchlorides, and epoxy resins to yield the corresponding polyimide, polyamide, and epoxy polymers. These polymers were then used to make films, a wire coating enamel, and a semi-permeable membrane. The novelty of this invention resides in the process to make the diamine. Traditionally, dinitro compounds are reduced with hydrazine or a catalyst such as palladium on charcoal. The catalyst which is used in this invention is platinum oxide. When this catalyst is used, it makes it possible to form a polymer-grade diamine

    Process for lowering the dielectric constant of polyimides using diamic acid additives

    Get PDF
    Linear aromatic polyimides with low dielectric constants are produced by adding a diamic acid additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. The resulting modified polyimide is a better electrical insulator than state-of-the-art commercially available polyimides

    A process for preparing an assembly of an article and a polyimide which resists dimensional change, delamination, and debonding when exposed to changes in temperature

    Get PDF
    An assembly of an article and a polyimide composition is prepared. The assembly resists dimensional change, delamination, or debonding when exposed to changes to temperature. An article is provided. A polyamic acid solution which yields a polyimide having a low coefficient of thermal expansion (CTE) was prepared. Equimolar quantities of an aromatic diamine and an aromatic dianhydride were reacted in a solvent medium to form a polyamic acid solution. A metal ion containing additive was added to the solution. Examples of this additive are: TbCl3, DyCl3, ErCl3, TmCl3, Al(C5H7O2)3, and Er2S3. The polyamic acid solution was imidized and is combined with the article to form the assembly

    Wet spinning of solid polyamic acid fibers

    Get PDF
    The invention is a process for the production of solid aromatic polyamic acid and polyimide fibers from a wet gel or coagulation bath wet gel using N,N-dimethylacetamide (DMAc) solutions of the polyamic acid derived from aromatic dianhydrides such as 3,3',4,4' benzophenonetetra carboxylic dianhydride (BTDA) and aromatic diamines such as 4,4'-oxydianiline (4,4'-ODA). By utilizing the relationship among coagulation medium and concentration, resin inherent viscosity, resin percent solids, filament diameter, and fiber void content, it is possible to make improved polyamic acid fibers. Solid polyimide fibers, obtained by the thermal cyclization of the polyamic acid precursor, have increased tensile properties compared to fibers containing macropores from the same resin system

    Low dielectric fluorinated poly(phenylene ether ketone) film and coating

    Get PDF
    The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials

    Tensile film clamps and mounting block for the rheovibron and autovibron viscoelastometer

    Get PDF
    A set of film clamps and a mounting block for use in the determination of tensile modulus and damping properties of films in a manually operated or automated Rheovibron is diagrammed. These clamps and mounting block provide uniformity of sample gripping and alignment in the instrument. Operator dependence and data variability are greatly reduced

    A process for preparing an assembly of an article and a soluble polyimide which resists dimensional change, delamination, and debonding when exposed to changes in temperature

    Get PDF
    An assembly of an article and a polyimide is prepared. The assembly resists dimensional change, delamination, or debonding when exposed to changes in temperature. An article is provided. A soluble polyimide resin solution having a low coefficient of thermal expansion (CTE) was prepared by dissolving the polyimide in solvent and adding a metal ion-containing additive to the solution. Examples of the additive are: Ho(OOCCH3), Er(NPPA)3, TmCl3, and Er(C5H7O2)3. The soluble polyimide resin is combined with the article to form the assembly
    corecore