123 research outputs found

    Naked mole-rat cortical neurons are resistant to acid-induced cell death.

    Get PDF
    Regulation of brain pH is a critical homeostatic process and changes in brain pH modulate various ion channels and receptors and thus neuronal excitability. Tissue acidosis, resulting from hypoxia or hypercapnia, can activate various proteins and ion channels, among which acid-sensing ion channels (ASICs) a family of primarily Na+ permeable ion channels, which alongside classical excitotoxicity causes neuronal death. Naked mole-rats (NMRs, Heterocephalus glaber) are long-lived, fossorial, eusocial rodents that display remarkable behavioral/cellular hypoxia and hypercapnia resistance. In the central nervous system, ASIC subunit expression is similar between mouse and NMR with the exception of much lower expression of ASIC4 throughout the NMR brain. However, ASIC function and neuronal sensitivity to sustained acidosis has not been examined in the NMR brain. Here, we show with whole-cell patch-clamp electrophysiology of cultured NMR and mouse cortical and hippocampal neurons that NMR neurons have smaller voltage-gated Na+ channel currents and more hyperpolarized resting membrane potentials. We further demonstrate that acid-mediated currents in NMR neurons are of smaller magnitude than in mouse, and that all currents in both species are reversibly blocked by the ASIC antagonist benzamil. We further demonstrate that NMR neurons show greater resistance to acid-induced cell death than mouse neurons. In summary, NMR neurons show significant cellular resistance to acidotoxicity compared to mouse neurons, contributing factors likely to be smaller ASIC-mediated currents and reduced NaV activity

    Human visceral nociception: findings from translational studies in human tissue.

    Get PDF
    Peripheral sensitization of nociceptors during disease has long been recognized as a leading cause of inflammatory pain. However, a growing body of data generated over the last decade has led to the increased understanding that peripheral sensitization is also an important mechanism driving abdominal pain in highly prevalent functional bowel disorders, in particular, irritable bowel syndrome (IBS). As such, the development of drugs that target pain-sensing nerves innervating the bowel has the potential to be a successful analgesic strategy for the treatment of abdominal pain in both organic and functional gastrointestinal diseases. Despite the success of recent peripherally restricted approaches for the treatment of IBS, not all drugs that have shown efficacy in animal models of visceral pain have reduced pain end points in clinical trials of IBS patients, suggesting innate differences in the mechanisms of pain processing between rodents and humans and, in particular, how we model disease states. To address this gap in our understanding of peripheral nociception from the viscera and the body in general, several groups have developed experimental systems to study nociception in isolated human tissue and neurons, the findings of which we discuss in this review. Studies of human tissue identify a repertoire of human primary afferent subtypes comparable to rodent models including a nociceptor population, the targeting of which will shape future analgesic development efforts. Detailed mechanistic studies in human sensory neurons combined with unbiased RNA-sequencing approaches have revealed fundamental differences in not only receptor/channel expression but also peripheral pain pathways.Non
    • …
    corecore