4,816 research outputs found

    Recent Cases

    Get PDF

    Insight into the Carboxyl Transferase Domain Mechanism of Pyruvate Carboxylase from \u3cem\u3eRhizobium etli\u3c/em\u3e

    Get PDF
    The effects of mutations in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain but surprisingly showed 7- and 3.5-fold increases in activity, as compared to that of the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A-catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and removal of a proton from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction

    Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Get PDF
    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research

    Association of sex with neurobehavioral markers of executive function in 2-year-olds at high and low likelihood of autism

    Get PDF
    IMPORTANCE: Children with autism and their siblings exhibit executive function (EF) deficits early in development, but associations between EF and biological sex or early brain alterations in this population are largely unexplored. OBJECTIVE: To investigate the interaction of sex, autism likelihood group, and structural magnetic resonance imaging alterations on EF in 2-year-old children at high familial likelihood (HL) and low familial likelihood (LL) of autism, based on having an older sibling with autism or no family history of autism in first-degree relatives. DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study assessed 165 toddlers at HL (n = 110) and LL (n = 55) of autism at 4 university-based research centers. Data were collected from January 1, 2007, to December 31, 2013, and analyzed between August 2021 and June 2022 as part of the Infant Brain Imaging Study. MAIN OUTCOMES AND MEASURES: Direct assessments of EF and acquired structural magnetic resonance imaging were performed to determine frontal lobe, parietal lobe, and total cerebral brain volume. RESULTS: A total of 165 toddlers (mean [SD] age, 24.61 [0.95] months; 90 [54%] male, 137 [83%] White) at HL for autism (n = 110; 17 diagnosed with ASD) and LL for autism (n = 55) were studied. The toddlers at HL for autism scored lower than the toddlers at LL for autism on EF tests regardless of sex (mean [SE] B = -8.77 [4.21]; 95% CI, -17.09 to -0.45; η2p = 0.03). With the exclusion of toddlers with autism, no group (HL vs LL) difference in EF was found in boys (mean [SE] difference, -7.18 [4.26]; 95% CI, 1.24-15.59), but EF was lower in HL girls than LL girls (mean [SE] difference, -9.75 [4.34]; 95% CI, -18.32 to -1.18). Brain-behavior associations were examined, controlling for overall cerebral volume and developmental level. Sex differences in EF-frontal (B [SE] = 16.51 [7.43]; 95% CI, 1.36-31.67; η2p = 0.14) and EF-parietal (B [SE] = 17.68 [6.99]; 95% CI, 3.43-31.94; η2p = 0.17) associations were found in the LL group but not the HL group (EF-frontal: B [SE] = -1.36 [3.87]; 95% CI, -9.07 to 6.35; η2p = 0.00; EF-parietal: B [SE] = -2.81 [4.09]; 95% CI, -10.96 to 5.34; η2p = 0.01). Autism likelihood group differences in EF-frontal (B [SE] = -9.93 [4.88]; 95% CI, -19.73 to -0.12; η2p = 0.08) and EF-parietal (B [SE] = -15.44 [5.18]; 95% CI, -25.86 to -5.02; η2p = 0.16) associations were found in girls not boys (EF-frontal: B [SE] = 6.51 [5.88]; 95% CI, -5.26 to 18.27; η2p = 0.02; EF-parietal: B [SE] = 4.18 [5.48]; 95% CI, -6.78 to 15.15; η2p = 0.01). CONCLUSIONS AND RELEVANCE: This cohort study of toddlers at HL and LL of autism suggests that there is an association between sex and EF and that brain-behavior associations in EF may be altered in children at HL of autism. Furthermore, EF deficits may aggregate in families, particularly in girls

    Probing the Catalytic Roles of Arg548 and Gln552 in the Carboxyl Transferase Domain of the \u3cem\u3eRhizobium etli\u3c/em\u3e Pyruvate Carboxylase by Site-directed Mutagenesis

    Get PDF
    The roles of Arg548 and Gln552 residues in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase were investigated using site-directed mutagenesis. Mutation of Arg548 to alanine or glutamine resulted in the destabilization of the quaternary structure of the enzyme, suggesting that this residue has a structural role. Mutations R548K, Q552N, and Q552A resulted in a loss of the ability to catalyze pyruvate carboxylation, biotin-dependent decarboxylation of oxaloacetate, and the exchange of protons between pyruvate and water. These mutants retained the ability to catalyze reactions that occur at the active site of the biotin carboxylase domain, i.e., bicarbonate-dependent ATP cleavage and ADP phosphorylation by carbamoyl phosphate. The effects of oxamate on the catalysis in the biotin carboxylase domain by the R548K and Q552N mutants were similar to those on the catalysis of reactions by the wild-type enzyme. However, the presence of oxamate had no effect on the reactions catalyzed by the Q552A mutant. We propose that Arg548 and Gln552 facilitate the binding of pyruvate and the subsequent transfer of protons between pyruvate and biotin in the partial reaction catalyzed in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase

    Mast Cell–Derived Particles Deliver Peripheral Signals to Remote Lymph Nodes

    Get PDF
    During infection, signals from the periphery are known to reach draining lymph nodes (DLNs), but how these molecules, such as inflammatory cytokines, traverse the significant distances involved without dilution or degradation remains unclear. We show that peripheral mast cells, upon activation, release stable submicrometer heparin-based particles containing tumor necrosis factor and other proteins. These complexes enter lymphatic vessels and rapidly traffic to the DLNs. This physiological drug delivery system facilitates communication between peripheral sites of inflammation and remote secondary lymphoid tissues

    Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF

    Get PDF
    We report generation of an ultrafast supercontinuum extending into the mid- infrared in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF) pumped by 1.7 μ\mum light from an optical parametric amplifier. The simple fiber structure offers shallow dispersion and flat transmission in the near and mid-infrared, enabling the generation of broadband spectra extending from 300 nm to 3.1 μ\mum, with a total energy of a few μ\muJ. In addition, we report the emission of ultraviolet dispersive waves whose frequency can be tuned simply by adjusting the pump wavelength. SR-PCF also provides an effective means of compressing and delivering tunable ultrafast pulses in the near and mid-infrared spectral regions.Comment: 7 pages, 4 figure

    Expedition 302 summary

    No full text
    The first scientific drilling expedition to the central Arctic Ocean was completed in September 2004. Integrated Ocean Drilling Program Expedition 302, Arctic Coring Expedition (ACEX), recovered sediment cores to 428 meters below seafloor (mbsf) in water depths of ~1300 m, 250 km from the North Pole.Expedition 302's destination was the Lomonosov Ridge, hypothesized to be a sliver of continental crust that broke away from the Eurasian plate at ~56 Ma. As the ridge moved northward and subsided, marine sedimentation occurred and continues to the present, resulting in what was anticipated from seismic data to be a continuous paleoceanographic record. The elevation of the ridge above the surrounding abyssal plains (~3 km) ensured that sediments atop the ridge were free of turbidites. The primary scientific objective of Expedition 302 was to continuously recover this sediment record and to sample the underlying sedimentary bedrock by drilling and coring from a stationary drillship.The biggest challenge during Expedition 302 was maintaining the drillship's location while drilling and coring in 2–4 m thick sea ice that moved at speeds approaching 0.5 kt. Sea-ice cover over the Lomonosov Ridge moves with one of the two major Arctic sea-ice circulation systems, the Transpolar Drift, and responds locally to wind, tides, and currents. Until now, the high Arctic Ocean Basin, known as "mare incognitum" within the scientific community, had never before been deeply cored because of these challenging sea-ice conditions.Initial results reveal that biogenic carbonate is present only in the Holocene–Pleistocene interval. The upper 198 mbsf represents a relatively high sedimentation rate record of the past 18 m.y. and is composed of sediment with ice-rafted debris and dropstones, suggesting that ice-covered conditions extended at least this far back in time. Details of the ice type (e.g., iceberg versus sea ice), timing, and characteristics (e.g., perennial versus seasonal) await further study. A hiatus occurs at 193.13 mbsf, spanning a 25 m.y. interval from the early Miocene to the middle Eocene between ~18 Ma and 43 Ma. The sediment record during the middle Eocene is of dark, organic-rich biosiliceous composition. Isolated pebbles, interpreted as ice-rafted dropstones, are present down to 239 mbsf, well into this middle Eocene interval. Around the lower/middle Eocene boundary an abundance of Azolla spp. occurs, suggesting that a fresh and/or low-salinity surface water setting dominated the region during this time period. Although predrilling predictions based on geophysical data had placed the base of the sediment column at 50 Ma, drilling revealed that the uppermost Paleocene to lowermost Eocene boundary interval, well known as the Paleocene/Eocene Thermal Maximum (PETM), was recovered. During the PETM, the temperature of the Arctic Ocean surface waters exceeded 20°C.Drilling during Expedition 302 also penetrated into the underlying sedimentary bedrock, revealing a shallow-water depositional environment of Late Cretaceous age
    corecore