1,482 research outputs found

    Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations

    Get PDF
    We determine enhancement ratios for NO_x, PAN, and other NO_y species from boreal biomass burning using aircraft data obtained during the ARCTAS-B campaign and examine the impact of these emissions on tropospheric ozone in the Arctic. We find an initial emission factor for NO_x of 1.06 g NO per kg dry matter (DM) burned, much lower than previous observations of boreal plumes, and also one third the value recommended for extratropical fires. Our analysis provides the first observational confirmation of rapid PAN formation in a boreal smoke plume, with 40% of the initial NO_x emissions being converted to PAN in the first few hours after emission. We find little clear evidence for ozone formation in the boreal smoke plumes during ARCTAS-B in either aircraft or satellite observations, or in model simulations. Only a third of the smoke plumes observed by the NASA DC8 showed a correlation between ozone and CO, and ozone was depleted in the plumes as often as it was enhanced. Special observations from the Tropospheric Emission Spectrometer (TES) also show little evidence for enhanced ozone in boreal smoke plumes between 15 June and 15 July 2008. Of the 22 plumes observed by TES, only 4 showed ozone increasing within the smoke plumes, and even in those cases it was unclear that the increase was caused by fire emissions. Using the GEOS-Chem atmospheric chemistry model, we show that boreal fires during ARCTAS-B had little impact on the median ozone profile measured over Canada, and had little impact on ozone within the smoke plumes observed by TES

    An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE

    Get PDF
    Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO_2 from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO_2 using observed CH_2O and H_2O_2 as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO_2 to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H_2O_2 during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HO_x budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH_2O and H_2O_2; however when the model is constrained with observed CH_2O, H_2O_2 predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH_2O is uncertain. Free tropospheric observations of acetaldehyde (CH_3CHO) are 2–3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH_2O. The box model calculates gross O_3 formation during spring to maximize from 1–4 km at 0.8 ppbv d^(−1), in agreement with estimates from TOPSE, and a gross production of 2–4 ppbv d^(−1) in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO_2 in place of model predictions decreases the gross production by 25–50%. Net O_3 production is near zero throughout the ARCTAS-A troposphere, and is 1–2 ppbv in the boundary layer and upper altitudes during ARCTAS-B

    Adolescents leaving mental health or social care services: predictors of mental health and psychosocial outcomes one year later

    Get PDF
    This is the final version of the article. Available from BMC via the DOI in this recordBACKGROUND: UK service structure necessitates a transition out of youth services at a time of increased risk for the development and onset of mental disorders. Little is currently known about the mental health and psychosocial outcomes of leaving services at this time. The aim of this study was to determine predictors of mental health and social adjustment in adolescents leaving mental health or social care services. METHODS: A cohort (n = 53) of 17 year olds were interviewed and assessed when preparing to leave adolescent services and again 12 months later. Their mental health and psychosocial characteristics were compared to a same-age community sample group (n = 1074). RESULTS: At discharge 34 (64%) met DSM IV criteria for a current psychiatric diagnosis and only 3 (6%) participants met operational criteria for successful outcomes at follow-up. Impairments in mental health, lack of employment, education or training and low preparedness were associated with poor outcomes. CONCLUSIONS: The findings suggest the current organisation of mental health and care services may not be fit for purpose and even unwittingly contribute to persistent mental illness and poor psychosocial outcomes. A redesign of services should consider a model where the timing of transition does not fall at the most hazardous time for young people, but is sufficiently flexible to allow young people to move on when they are personally, socially and psychologically most able to succeed. Assessment of a young person's readiness to transition might also be useful. A youth focused service across the adolescent and early adult years may be better placed to avoid young people falling through the service gap created by poor transitional management.This work was completed within the NIHR Collaborations for Leadership in Applied Health Research and Care (CLAHRC) for Cambridgeshire and Peterborough (now CLAHRC East of England). The CLAHRC is hosted by the University of Cambridge and the Cambridge and Peterborough NHS Foundation Trust. This work was partially supported by a Wellcome Trust programme grant (grant no. 74296) for the ROOTS data collection awarded to Ian Goodyer

    Validation of the Harvard Lyman-α in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor

    Get PDF
    Building on previously published details of the laboratory calibrations of the Harvard Lyman-α photofragment fluorescence hygrometer (HWV) on the NASA ER-2 and WB-57 aircraft, we describe here the validation process for HWV, which includes laboratory calibrations and intercomparisons with other Harvard water vapor instruments at water vapor mixing ratios from 0 to 10 ppmv, followed by in-flight intercomparisons with the same Harvard hygrometers. The observed agreement exhibited in the laboratory and during intercomparisons helps corroborate the accuracy of HWV. In light of the validated accuracy of HWV, we present and evaluate a series of intercomparisons with satellite and balloon borne water vapor instruments made from the upper troposphere to the lower stratosphere in the tropics and midlatitudes. Whether on the NASA ER-2 or WB-57 aircraft, HWV has consistently measured about 1–1.5 ppmv higher than the balloon-borne NOAA/ESRL/GMD frost point hygrometer (CMDL), the NOAA Cryogenic Frost point Hygrometer (CFH), and the Microwave Limb Sounder (MLS) on the Aura satellite in regions of the atmosphere where water vapor is <10 ppmv. Comparisons in the tropics with the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite show large variable differences near the tropopause that converge to ~10% above 460 K, with HWV higher. Results we show from the Aqua Validation and Intercomparison Experiment (AquaVIT) at the AIDA chamber in Karlsruhe do not reflect the observed in-flight differences. We illustrate that the interpretation of the results of comparisons between modeled and measured representations of the seasonal cycle of water entering the lower tropical stratosphere is dictated by which data set is used

    Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    Get PDF
    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer–fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km^2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM_(2.5) (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5–3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH_4^+]/(2[SO_4^(2−)] + [NO_3^−]) is only 0.5–0.7 mol mol^(−1) in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8–28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM_(2.5) shows far less summer-to-winter decrease than AOD and we attribute this in part to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are consistent with surface PM_(2.5). This implies that satellites can be used reliably to infer surface PM_(2.5) over monthly timescales if a good CTM representation of the aerosol vertical profile is available

    Adolescents leaving mental health or social care services: predictors of mental health and psychosocial outcomes one year later.

    Get PDF
    BACKGROUND: UK service structure necessitates a transition out of youth services at a time of increased risk for the development and onset of mental disorders. Little is currently known about the mental health and psychosocial outcomes of leaving services at this time. The aim of this study was to determine predictors of mental health and social adjustment in adolescents leaving mental health or social care services. METHODS: A cohort (n = 53) of 17 year olds were interviewed and assessed when preparing to leave adolescent services and again 12 months later. Their mental health and psychosocial characteristics were compared to a same-age community sample group (n = 1074). RESULTS: At discharge 34 (64%) met DSM IV criteria for a current psychiatric diagnosis and only 3 (6%) participants met operational criteria for successful outcomes at follow-up. Impairments in mental health, lack of employment, education or training and low preparedness were associated with poor outcomes. CONCLUSIONS: The findings suggest the current organisation of mental health and care services may not be fit for purpose and even unwittingly contribute to persistent mental illness and poor psychosocial outcomes. A redesign of services should consider a model where the timing of transition does not fall at the most hazardous time for young people, but is sufficiently flexible to allow young people to move on when they are personally, socially and psychologically most able to succeed. Assessment of a young person's readiness to transition might also be useful. A youth focused service across the adolescent and early adult years may be better placed to avoid young people falling through the service gap created by poor transitional management.This work was completed within the NIHR Collaborations for Leadership in Applied Health Research and Care (CLAHRC) for Cambridgeshire and Peterborough (now CLAHRC East of England). The CLAHRC is hosted by the University of Cambridge and the Cambridge and Peterborough NHS Foundation Trust. This work was partially supported by a Wellcome Trust programme grant (grant no. 74296) for the ROOTS data collection awarded to Ian Goodyer.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12913-015-0853-

    Global and regional effects of the photochemistry of CH_3O_2NO_2: evidence from ARCTAS

    Get PDF
    Using measurements from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment, we show that methyl peroxy nitrate (CH_3O_2NO_2) is present in concentrations of ~5–15 pptv in the springtime arctic upper troposphere. We investigate the regional and global effects of CH_3O_2NO_2 by including its chemistry in the GEOS-Chem 3-D global chemical transport model. We find that at temperatures below 240 K inclusion of CH_3O_2NO_2 chemistry results in decreases of up to ~20 % in NO_x, ~20 % in N_2O_5, ~5 % in HNO3, ~2 % in ozone, and increases in methyl hydrogen peroxide of up to ~14 %. Larger changes are observed in biomass burning plumes lofted to high altitude. Additionally, by sequestering NO_x at low temperatures, CH_3O_2NO_2 decreases the cycling of HO_2 to OH, resulting in a larger upper tropospheric HO_2 to OH ratio. These results may impact some estimates of lightning NO_x sources as well as help explain differences between models and measurements of upper tropospheric composition
    corecore