1,271 research outputs found
Stopping the Panzers: The Untold Story of D-Day (Book Review) by Marc Milner
Review of Stopping the Panzers: The Untold Story of D-Day by Marc Milne
The Myth of the Good War: America in the Second World War Revised Edition (Book Review) by Jacques R. Pauwels
Review of The Myth of the Good War: America in the Second World War Revised Edition by Jacques R. Pauwel
Review of The British Commonwealth and Victory in the Second World War by Iain E. Johnston-White
Review of The British Commonwealth and Victory in the Second World War by Iain E. Johnston-White
Review of The Endless Battle: The Fall of Hong Kong and Canadian POWs in Imperial Japan by Andy Flanagan
Review of The Endless Battle: The Fall of Hong Kong and Canadian POWs in Imperial Japan by Andy Flanagan
Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning.
The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion.IMPORTANCEChlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified microtubules around the inclusion and that Chlamydia trachomatis hijacks this novel function of ARF to reposition the Golgi complex
Alien Registration- St Croix, Bertha (Fort Fairfield, Aroostook County)
https://digitalmaine.com/alien_docs/35914/thumbnail.jp
High Resolution Imaging of Vascular Function in Zebrafish
Rationale: The role of the endothelium in the pathogenesis of cardiovascular disease is an emerging field of study, necessitating the development of appropriate model systems and methodologies to investigate the multifaceted nature of endothelial dysfunction including disturbed barrier function and impaired vascular reactivity. Objective: We aimed to develop and test an optimized high-speed imaging platform to obtain quantitative real-time measures of blood flow, vessel diameter and endothelial barrier function in order to assess vascular function in live vertebrate models. Methods and Results: We used a combination of cutting-edge optical imaging techniques, including high-speed, camera-based imaging (up to 1000 frames/second), and 3D confocal methods to collect real time metrics of vascular performance and assess the dynamic response to the thromboxane A2 (TXA2) analogue, U-46619 (1 μM), in transgenic zebrafish larvae. Data obtained in 3 and 5 day post-fertilization larvae show that these methods are capable of imaging blood flow in a large (1 mm) segment of the vessel of interest over many cardiac cycles, with sufficient speed and sensitivity such that the trajectories of individual erythrocytes can be resolved in real time. Further, we are able to map changes in the three dimensional sizes of vessels and assess barrier function by visualizing the continuity of the endothelial layer combined with measurements of extravasation of fluorescent microspheres. Conclusions: We propose that this system-based microscopic approach can be used to combine measures of physiologic function with molecular behavior in zebrafish models of human vascular disease. © 2012 Watkins et al
Review of The British Commonwealth and Victory in the Second World War by Iain E. Johnston-White
Review of The British Commonwealth and Victory in the Second World War by Iain E. Johnston-White
- …
