23 research outputs found

    A novel COL1A2 C-propeptide cleavage site mutation causing high bone mass osteogenesis imperfecta with a regional distribution pattern

    Get PDF
    Osteogenesis imperfecta (OI) is typically characterized by low bone mass and increased bone fragility caused by heterozygous mutations in the type I procollagen genes (COL1A1/COL1A2). We report two cases of a 56-year-old woman and her 80-year-old mother who suffered from multiple vertebral and non-vertebral fractures with onset in early childhood. A full osteologic assessment including dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and serum analyses pointed to a high bone mineral density (BMD) in the hip (DXA Z-score + 3.7 and + 3.9) but low to normal bone mass in the spine and preserved bone microstructure in the distal tibia. Serum markers of bone formation and bone resorption were elevated. Using whole exome sequencing, we identified a novel mutation in the COL1A2 gene causing a p. (Asp1120Gly) substitution at the protein level and affecting the type I procollagen C-propeptide cleavage site. In line with previously reported cases, our data independently prove the existence of an unusual phenotype of high bone mass OI caused by a mutation in the procollagen C-propeptide cleavage with a clinically persistent phenotype through adulthood

    Genetic Diagnostics in Routine Osteological Assessment of Adult Low Bone Mass Disorders

    Get PDF
    Context Many different inherited and acquired conditions can result in premature bone fragility / low bone mass disorders (LBMD). Objective We aimed at elucidating the impact of genetic testing on differential diagnosis of adult LBMD and at defining clinical criteria for predicting monogenic forms. Methods Four clinical centers broadly recruited a cohort of 394 unrelated adult women before menopause and men younger than 55 years with a bone mineral density (BMD) Z-score 2), and a high normal BMI. In contrast, mutation frequencies did not correlate with age, prevalent vertebral fractures, BMD, or biochemical parameters. In individuals without monogenic disease-causing rare variants, common variants predisposing for low BMD, e.g. in LRP5, were overrepresented. Conclusion The overlapping spectra of monogenic adult LBMD can be easily disentangled by genetic testing and the proposed clinical criteria can help to maximize the diagnostic yield

    Ressourcenkostenrechnung

    No full text

    Dynamics of Skeletal Status under Optimized Management during Subsequent Pregnancy in Three Women with a History of Pregnancy‐ and Lactation‐Associated Osteoporosis Carrying pathogenic Variants in WNT1 and LRP5

    No full text
    Abstract Pregnancy‐ and lactation‐associated osteoporosis (PLO) is a rare but clinically highly relevant condition, characterized by reduced bone mineral density (BMD) and acute onset of severe pain due to symptomatic bone marrow edema of the hip or vertebral and/or insufficiency fractures, among others. Previous reports showed a high frequency of hereditary bone disorders unmasked by PLO, predisposing for more severe forms. To date, no data on the risk for additional fractures during subsequent pregnancy in women with PLO and genetic bone disorder have been available. To address this question, we retrospectively analyzed the clinical, biochemical, and densitometric course of three women with a history of PLO and detected variants in WNT1 or LRP5 and subsequent pregnancies. Calcium homeostasis and bone turnover were optimized by basic treatment, and timely initiation of weaning was recommended. Teriparatide treatment for 12 months under strict contraception was initiated in one woman after the diagnosis of PLO. In none of the women did additional fractures or symptomatic bone marrow edemas occur, and BMD by dual‐energy X‐ray absorptiometry as bone microarchitecture by high‐resolution peripheral quantitative computed tomography remained stable. In conclusion, this report expands the understanding of this rare but severe condition and helps to improve clinical counseling and management. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    Spurenstoffelimination durch den kombinierten Einsatz granulierter Aktivkohle und Ozon

    No full text
    corecore