21 research outputs found

    Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids

    Get PDF
    The influence of 3D microenvironments on apoptosis susceptibility remains poorly understood. Here, we studied the susceptibility of cancer cell spheroids, grown to the size of micrometastases, to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Interestingly, pronounced, spatially coordinated response heterogeneities manifest within spheroidal microenvironments: In spheroids grown from genetically identical cells, TRAIL-resistant subpopulations enclose, and protect TRAIL-hypersensitive cells, thereby increasing overall treatment resistance. TRAIL-resistant layers form at the interface of proliferating and quiescent cells and lack both TRAILR1 and TRAILR2 protein expression. In contrast, oxygen, and nutrient deprivation promote high amounts of TRAILR2 expression in TRAIL-hypersensitive cells in inner spheroid layers. COX-II inhibitor celecoxib further enhanced TRAILR2 expression in spheroids, likely resulting from increased ER stress, and thereby re-sensitized TRAIL-resistant cell layers to treatment. Our analyses explain how TRAIL response heterogeneities manifest within well-defined multicellular environments, and how spatial barriers of TRAIL resistance can be minimized and eliminated

    Randomized controlled phase 2 trial of hydroxychloroquine in childhood interstitial lung disease

    Get PDF
    Background No results of controlled trials are available for any of the few treatments offered to children with interstitial lung diseases (chILD). We evaluated hydroxychloroquine (HCQ) in a phase 2, prospective, multicentre, 1:1-randomized, double-blind, placebo-controlled, parallel-group/crossover trial. HCQ (START arm) or placebo were given for 4 weeks. Then all subjects received HCQ for another 4 weeks. In the STOP arm subjects already taking HCQ were randomized to 12 weeks of HCQ or placebo (= withdrawal of HCQ). Then all subjects stopped treatment and were observed for another 12 weeks. Results 26 subjects were included in the START arm, 9 in the STOP arm, of these four subjects participated in both arms. The primary endpoint, presence or absence of a response to treatment, assessed as oxygenation (calculated from a change in transcutaneous O 2 -saturation of ≥ 5%, respiratory rate ≥ 20% or level of respiratory support), did not differ between placebo and HCQ groups. Secondary endpoints including change of O 2 -saturation ≥ 3%, health related quality of life, pulmonary function and 6-min-walk-test distance, were not different between groups. Finally combining all placebo and all HCQ treatment periods did not identify significant treatment effects. Overall effect sizes were small. HCQ was well tolerated, adverse events were not different between placebo and HCQ. Conclusions Acknowledging important shortcomings of the study, including a small study population, the treatment duration, lack of outcomes like lung function testing below age of 6 years, the small effect size of HCQ treatment observed requires careful reassessments of prescriptions in everyday practice (EudraCT-Nr.: 2013-003714-40, www.clinicaltrialsregister.eu , registered 02.07.2013)

    cFLIP downregulation is an early event required for endoplasmic reticulum stress-induced apoptosis in tumor cells

    No full text
    Protein misfolding or unfolding and the resulting endoplasmic reticulum (ER) stress frequently occur in highly proliferative tumors. How tumor cells escape cell death by apoptosis after chronic ER stress remains poorly understood. We have investigated in both two-dimensional (2D) cultures and multicellular tumor spheroids (MCTSs) the role of caspase-8 inhibitor cFLIP as a regulator of the balance between apoptosis and survival in colon cancer cells undergoing ER stress. We report that downregulation of cFLIP proteins levels is an early event upon treatment of 2D cultures of colon cancer cells with ER stress inducers, preceding TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) upregulation, caspase-8 activation, and apoptosis. Maintaining high cFLIP levels during ER stress by ectopic expression of cFLIP markedly inhibits ER stress-induced caspase-8 activation and apoptosis. Conversely, cFLIP knockdown by RNA interference significantly accelerates caspase-8 activation and apoptosis upon ER stress. Despite activation of the proapoptotic PERK branch of the unfolded protein response (UPR) and upregulation of TRAIL-R2, MCTSs are markedly more resistant to ER stress than 2D cultures of tumor cells. Resistance of MCTSs to ER stress-induced apoptosis correlates with sustained cFLIP expression. Interestingly, resistance to ER stress-induced apoptosis is abolished in MCTSs generated from cFLIP knockdown tumor cells. Overall, our results suggest that controlling cFLIP levels in tumors is an adaptive strategy to prevent tumor cell’s demise in the unfavorable conditions of the tumor microenvironment.This work was supported by grants from Ministerio de Economía y Competitividad (SAF2015–64383-P), Ministerio de Ciencia, Innovación y Universidades (PGC2018–093960- B-I00), Junta de Andalucía (PY20-00754), CIBERONC ISCIII CB16/12/00421 and the European Community through the regional development funding program (FEDER) to ALR. Work in the group of MR is supported by the Deutsche Forschungsgemeinschaft (MR 3226/4-1)

    The potential of artificial intelligence in academic research at a digital university

    Get PDF
    Steady growing research material in a variety of databases, repositories and clouds make academic content more than ever hard to discover. Finding adequate material for the own research however is essential for every researcher. Based on recent developments in the field of artificial intelligence and the identified digital capabilities of future universities a change in the basic work of academic research is predicted. This study defines the idea of how artificial intelligence could simplifiy academic research at a digital university. Today's studies in the field of AI spectacle the true potential and its commanding impact on academic research

    A Gene Map of the Best’s Vitelliform Macular Dystrophy Region in Chromosome 11q12–q13.1

    Get PDF
    Best’s vitelliform macular dystrophy is an autosomal dominant disorder of unknown causes. To identify the underlying gene defect the disease locus has been mapped to an ∼1.4-Mb region on chromosome 11q12–q13.1. As a prerequisite for its positional cloning we have assembled a high coverage PAC contig of the candidate region. Here, we report the construction of a primary transcript map that places a total of 19 genes within the Best’s disease region. This includes 14 transcripts of as yet unknown function obtained by EST mapping and/or cDNA selection and five genes mapped previously to the interval (CD5, PGA, DDB1, FEN1, and FTH1). Northern blot analyses were performed to determine the expression profiles in various human tissues. At least three genes appear to be good candidates for Best’s disease based on their abundant expression in retina or retinal pigment epithelium. Additional information on the functional properties of these genes, as well as mutation analyses in Best’s disease patients, have to await their further characterization. [The GenBank/EMBL accession numbers and details of the isolation, localization, and characterization of ESTs and selected cDNAs are available as online supplements in Online Tables 1–3 at http://www.genome.org.
    corecore