377 research outputs found

    Algebraic fidelity decay for local perturbations

    Full text link
    From a reflection measurement in a rectangular microwave billiard with randomly distributed scatterers the scattering and the ordinary fidelity was studied. The position of one of the scatterers is the perturbation parameter. Such perturbations can be considered as {\em local} since wave functions are influenced only locally, in contrast to, e. g., the situation where the fidelity decay is caused by the shift of one billiard wall. Using the random-plane-wave conjecture, an analytic expression for the fidelity decay due to the shift of one scatterer has been obtained, yielding an algebraic 1/t1/t decay for long times. A perfect agreement between experiment and theory has been found, including a predicted scaling behavior concerning the dependence of the fidelity decay on the shift distance. The only free parameter has been determined independently from the variance of the level velocities.Comment: 4 pages, 5 figure

    Distribution of the S-matrix in chaotic microwave cavities with direct processes and absorption

    Full text link
    We quantify the presence of direct processes in the S-matrix of chaotic microwave cavities with absorption in the one-channel case. To this end the full distribution P_S(S) of the S-matrix, i.e. S=\sqrt{R}e^{i\theta}, is studied in cavities with time-reversal symmetry for different antenna coupling strengths T_a or direct processes. The experimental results are compared with random-matrix calculations and with numerical simulations based on the Heidelberg approach including absorption. The theoretical result is a generalization of the Poisson kernel. The experimental and the numerical distributions are in excellent agreement with random-matrix predictions for all cases.Comment: 4 pages, 4 figure

    Resonance widths in open microwave cavities studied by harmonic inversion

    Full text link
    From the measurement of a reflection spectrum of an open microwave cavity the poles of the scattering matrix in the complex plane have been determined. The resonances have been extracted by means of the harmonic inversion method. By this it became possible to resolve the resonances in a regime where the line widths exceed the mean level spacing up to a factor of 10, a value inaccessible in experiments up to now. The obtained experimental distributions of line widths were found to be in perfect agreement with predictions from random matrix theory when wall absorption and fluctuations caused by couplings to additional channels are considered.Comment: 4 pages, 6 figure

    On the theory of cavities with point-like perturbations. Part II: Rectangular cavities

    Full text link
    We consider an application of a general theory for cavities with point-like perturbations for a rectangular shape. Hereby we concentrate on experimental wave patterns obtained for nearly degenerate states. The nodal lines in these patterns may be broken, which is an effect coming only from the experimental determination of the patterns. These findings are explained within a framework of the developed theory.Comment: 14 pages, 3 figure

    Tunable Fano Resonances in Transport through Microwave Billiards

    Full text link
    We present a tunable microwave scattering device that allows the controlled variation of Fano line shape parameters in transmission through quantum billiards. Transport in this device is nearly fully coherent. By comparison with quantum calculations, employing the modular recursive Green's-function method, the scattering wave function and the degree of residual decoherence can be determined. The parametric variation of Fano line shapes in terms of interacting resonances is analyzed.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Coherent Destruction of Photon Emission from a Single Molecule Source

    Full text link
    The behavior of a single molecule driven simultaneously by a laser and by an electric radio frequency field is investigated using a non-Hermitian Hamiltonian approach. Employing the renormalization group method for differential equations we calculate the average waiting time for the first photon emission event to occur, and determine the conditions for the suppression and enhancement of photon emission. An abrupt transition from localization-like behavior to delocalization behavior is found.Comment: 5 pages, 4 figure

    Diffractive orbits in the length spectrum of a 2D microwave cavity with a small scatterer

    Get PDF
    In a 2D rectangular microwave cavity dressed with one point-like scatterer, a semiclassical approach is used to analyze the spectrum in terms of periodic orbits and diffractive orbits. We show, both numerically and experimentally, how the latter can be accounted for in the so-called length spectrum which is retrieved from 2-point correlations of a finite range frequency spectrum. Beyond its fundamental interest, this first experimental evidence of the role played by diffractive orbits in the spectrum of an actual cavity, can be the first step towards a novel technique to detect and track small defects in wave cavities.Comment: 14 pages, format IO

    Correlations of electromagnetic fields in chaotic cavities

    Full text link
    We consider the fluctuations of electromagnetic fields in chaotic microwave cavities. We calculate the transversal and longitudinal correlation function based on a random wave assumption and compare the predictions with measurements on two- and three-dimensional microwave cavities.Comment: Europhys style, 8 pages, 3 figures (included

    Fidelity amplitude of the scattering matrix in microwave cavities

    Full text link
    The concept of fidelity decay is discussed from the point of view of the scattering matrix, and the scattering fidelity is introduced as the parametric cross-correlation of a given S-matrix element, taken in the time domain, normalized by the corresponding autocorrelation function. We show that for chaotic systems, this quantity represents the usual fidelity amplitude, if appropriate ensemble and/or energy averages are taken. We present a microwave experiment where the scattering fidelity is measured for an ensemble of chaotic systems. The results are in excellent agreement with random matrix theory for the standard fidelity amplitude. The only parameter, namely the perturbation strength could be determined independently from level dynamics of the system, thus providing a parameter free agreement between theory and experiment
    • …
    corecore