57 research outputs found

    Exploring planets and asteroids with 6DoF sensors: Utopia and realism

    Get PDF
    A 6 degrees-of-freedom (6DoF) sensor, measuring three components of translational acceleration and three components of rotation rate, provides the full history of motion it is exposed to. In Earth sciences 6DoF sensors have shown great potential in exploring the interior of our planet and its seismic sources. In space sciences, apart from navigation, 6DoF sensors are, up to now, only rarely used to answer scientific questions. As a first step of establishing 6DoF motion sensing deeper into space sciences, this article describes novel scientific approaches based on 6DoF motion sensing with substantial potential for constraining the interior structure of planetary objects and asteroids. Therefore we estimate 6DoF-signal levels that originate from lander–surface interactions during landing and touchdown, from a body’s rotational dynamics as well as from seismic ground motions. We discuss these signals for an exemplary set of target bodies including Dimorphos, Phobos, Europa, the Earth’s Moon and Mars and compare those to self-noise levels of state-of-the-art sensors

    In-situ regolith seismic velocity measurement at the InSight landing site on Mars

    Get PDF
    InSight's seismometer package SEIS was placed on the surface of Mars at about 1.2 m distance from the thermal properties instrument HP3 that includes a self-hammering probe. Recording the hammering noise with SEIS provided a unique opportunity to estimate the seismic wave velocities of the shallow regolith at the landing site. However, the value of studying the seismic signals of the hammering was only realised after critical hardware decisions were already taken. Furthermore, the design and nominal operation of both SEIS and HP3 are non-ideal for such high-resolution seismic measurements. Therefore, a series of adaptations had to be implemented to operate the self-hammering probe as a controlled seismic source and SEIS as a high-frequency seismic receiver including the design of a high-precision timing and an innovative high-frequency sampling workflow. By interpreting the first-arriving seismic waves as a P-wave and identifying first-arriving S-waves by polarisation analysis, we determined effective P- and S-wave velocities of vP = 114+43-20 m/s and vS = 60+11-7 m/s, respectively, from around 2,000 hammer stroke recordings. These velocities likely represent bulk estimates for the uppermost several 10's of cm of regolith. An analysis of the P-wave incidence angles provided an independent vP/vS ratio estimate of 1.84+0.89-0.35 that compares well with the traveltime based estimate of 1.92+0.52-0.28. The low seismic velocities are consistent with those observed for low-density unconsolidated sands and are in agreement with estimates obtained by other methods

    Monitoring lake ice with acoustic sensors

    No full text
    Monitoring of the thickness and elastic parameters of floating ice on lakes and the sea is of interest in understanding the climate change impact on Alpine and Arctic environments, assessing ice safety for recreational and engineering purposes, studying ice shelves as well as exploring possibilities for the future exploration of the icy crusts of ocean worlds in our solar system. A multitude of geophysical methods exist today to monitor sea and lake ice thickness as well as elastic parameters. Mostly, seismic and radar measurements are used. Both methods have in common that they come with significant logistical effort and expensive equipment. In this study, we present a novel low cost approach using acoustic sensors for ice monitoring. We explored the possibility of using microphones deployed on frozen lakes in the Swiss Alps to monitor the lake ice-thickness using acoustic signals originating from frequently occurring ice quakes. Data were obtained during a three-month-long field campaign at Lake St. Moritz in Switzerland in winter 2021/2022. Three microphone stations were placed on the lake in addition to five conventional seismometers. These seismometers were used to compare the acoustic signals with the seismic ice quake recordings. Additionally, also active-source experiments were conducted using hammer strokes as source, which were used to constrain elastic parameters of the ice. The acoustic recordings of ice quakes allowed us to exploit the unique characteristics of so-called air-coupled waves to determine time-dependent ice thickness curves of Lake St. Moritz for winter 2021/2022 using acoustic data only. Furthermore, the acoustic data allowed us to gain new insights into the ice/air coupling of seismic waves in ice

    Enhancement of Seismic Phase Identification using Polarization Filtering and Array Analysis

    No full text
    Single-station polarization analysis allows us to extract wave parameters, such as inclination, azimuth, and ellipticity angle, directly from a recorded seismic signal theoretically. In reality, however, seismic data are not purely polarized in the finite analysis window due to varying noise levels, complex wavefield interactions, and calibration errors. Hence, this would potentially influence the observation window of phases of interest. In order to minimize these systematic errors, the involvement of arrays and array processing techniques can further increase the signal-to-noise ratio of coherent signals in a wavefield, which allows us to identify different seismic phases, especially the weaker phases that are usually difficult to observe in a single waveform, even after filtering for a desired wave type. In this study, we present a new approach that combines polarization analysis and filtering in the time-frequency domain using the S-transform with conventional array analysis such as beamforming to enhance seismic signals and distinguish different phases based on their expected slownesses and backazimuth. We apply this approach on AlpArray data and demonstrate wavefield separation in vespagrams using various polarization filters. We also discuss the benefits of our approach especially on small amplitude inner core phases (e.g., PKIKPPKIKP) and their applications for advancing seismological study of Earth’s inner core

    Locating the Nordstream explosions using polarization analysis

    No full text
    The seismic events that preceded the leaks in the Nordstream natural gas pipelines in the Baltic Sea have been interpreted as explosions on the seabed. We use a polarization-based location method initially developed for marsquakes to locate the source region without the need for a subsurface velocity model. We show that the 2 largest seismic events can be unambiguously attributed to the methane plumes observed on the sea surface. The two largest events can be located with this method, using 4 and 5 stations located around the source, with the uncertainties in elliptical bounds of 30 x 30 km and 10 x 60 km, respectively. We can further show that both events emitted seismic energy for at least ten minutes after the initial explosion, indicative of resonances in the water column or the depressurizing pipeline.ISSN:2816-938

    Monitoring lake ice with seismic and acoustic sensors

    No full text
    Seismic monitoring of the thickness and elastic parameters of floating ice on lakes and the sea is of interest in understanding the climate change impact on Alpine and Arctic environments, assessing ice safety for recreational and engineering purposes, studying ice shelves as well as exploring possibilities for the future exploration of the icy crusts of ocean worlds in our solar system. Seismic data can provide an alternative to remote-sensing and ground-based radar measurements for estimation of ice thickness in cases where radar techniques fail. Because of the difficult access to Alpine and Arctic environments as well as seismic sensor coupling issues in ice environments, it is of interest to optimize the use of seismic instruments in terms of sensor type, sensor numbers and layouts. With the motivation to monitor over time the seismic activity of the lake ice and the ice properties, we conducted a series of seismic experiments on frozen lake St. Moritz in the Swiss Alps during two consecutive winters. Arrangements of sensors ranging in numbers from 96 geophones in mini-arrays to installations of 8, 2 and 1 conventional seismic sensors were used to measure the seismic wavefield generated by ice quakes (cryoseisms), artificial sources like hammer strokes, and ambient vibrations. These data provide an impressive and rich insights into the growth of the ice and variations of seismic activity with time. Even recordings with only a single station enable the determination of ice parameters and location of ice seismicity. Furthermore, we are exploring the value of recording air-coupled waves with microphones as alternative contact-free measurements related to seismic wave propagation in the ice, possibly even with sensors placed on the lake shore

    Bayesian parameter estimation of Galactic binaries in LISA data with Gaussian process regression

    No full text
    The Laser Interferometer Space Antenna (LISA), which is currently under construction, is designed to measure gravitational wave signals in the milli-Hertz frequency band. It is expected that tens of millions of Galactic binaries will be the dominant sources of observed gravitational waves. The Galactic binaries producing signals at mHz frequency range emit quasimonochromatic gravitational waves, which will be constantly measured by LISA. To resolve as many Galactic binaries as possible is a central challenge of the upcoming LISA dataset analysis. Although it is estimated that tens of thousands of these overlapping gravitational wave signals are resolvable, and the rest blurs into a galactic foreground noise, extracting tens of thousands of signals using Bayesian approaches is still computationally expensive. We developed a new end-to-end pipeline using Gaussian process regression to model the log-likelihood function in order to rapidly compute Bayesian posterior distributions. Using the pipeline we are able to solve the Lisa Data Challenge (LDC) 1-3 consisting of noisy data as well as additional challenges with overlapping signals and particularly faint signals.ISSN:1550-7998ISSN:0556-2821ISSN:1550-236

    Estimating the 3D structure of the Enceladus ice shell from Flexural and Crary waves using seismic simulations

    No full text
    A seismic investigation on Saturn's moon Enceladus could determine the thickness of the ice shell, along with variations from the mean thickness, by recovering phase and group velocities, and through the frequency content of surface waves. Here, we model the Enceladus ice shell with uniform thicknesses of 5 km, 20 km, and 40 km, as well as with ice topography ranging from 5-40 km. We investigate several approaches for recovering the mean ice shell thickness. We show that surface wave dispersions could be used to determine the mean ice shell thickness. Flexural waves in the ice only occur if the shell is thinner than a critical value < 20 km. Rayleigh waves dominate only in thicker ice shells. The frequency content of Crary waves depends on the ice shell thickness.ISSN:0012-821XISSN:1385-013

    Seismology on Mars: An analysis of direct, reflected, and converted seismic body waves with implications for interior structure

    No full text
    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission has been collecting high-quality seismic data on Mars since early 2019 that provide the first direct observations of its interior structure. Here we report on a complete analysis of the part of the marsquakes known as the low-frequency seismic events (main energy below 1 Hz) that are sensitive to the deep interior. To identify body-wave arrivals in the highly-scattered martian seismograms, we employ four complementary approaches: 1) time-domain envelopes; 2) polarised waveforms and their time-domain envelopes; 3) polarisation analysis; and 4) waveform matching. Through careful application of this processing scheme to each marsquake, we are able to significantly increase the number of phase picks relative to earlier analyses (from 41 to 76), including body-wave arrivals from direct (P and S), reflected (PP, SS, PPP, SSS, and ScS), and converted (Ps and Sp) phases. To constrain the depth of the marsquakes, we also identify depth phases (pP and sS). Following this, we invert an initial set of phase picks for models of interior structure, event distance, and depth, while predicting travel times for seismic phases not identified at the outset. Based on the predictions, we repick (every pick is subject to our processing scheme), thereby enlarging our differential travel-time data set (all picks are relative to the main P-wave arrival), and subsequently re-invert for an updated set of interior structure models, distances, and depths. Proceeding thus, we present updated radial seismic velocity models of the crust, mantle, and core. We observe crustal interfaces at average depths of 10, 25, and 45 km, respectively, of which the former two are interpreted as intra-crustal interfaces and the latter as the crust-mantle boundary. We find an upper mantle structure consistent with a low-velocity zone associated with a thermal lithosphere and a thermal gradient in the range 2.4–2.9 K/km that extends to a depth of ~450 km. The thermal structure of the Martian mantle indicates potential and core-mantle-boundary temperatures in the ranges 1650–1750 K and 1900–2100 K, respectively, implying an entirely liquid core at present. Based on the identification of ScS phases, we obtain an improved estimate of the Martian core radius (1820–1870 km) and mean core density (6–6.2 g/cm3).ISSN:0031-9201ISSN:1872-739

    Supplementary Document to An antipodal seismic and infra-acoustic view from Central Europe on the 15 January 2022 Hunga-Tonga-Hunga-Ha’apai eruption

    No full text
    This Supplement Document gives more background on the analysis of the high-frequency signals on C-European sub-networks and lightning activity in C-Europe during the study period. We also provide two Ground Motion Visualization (GMV) movies of the normalized vertical ground displacement in Central Europe at DOI: 10.3929/ethz-b-000578373. The first movie shows the space–time evolution of ground motion of normal modes across the seismic networks in C-Europe between 1–6 hrs after the onset of the eruption. The second movie highlights the zero-crossing of normal modes in red in the same time period
    • …
    corecore