58 research outputs found

    Exact-exchange density-functional calculations for noble-gas solids

    Full text link
    The electronic structure of noble-gas solids is calculated within density functional theory's exact-exchange method (EXX) and compared with the results from the local-density approximation (LDA). It is shown that the EXX method does not reproduce the fundamental energy gaps as well as has been reported for semiconductors. However, the EXX-Kohn-Sham energy gaps for these materials reproduce about 80 % of the experimental optical gaps. The structural properties of noble-gas solids are described by the EXX method as poorly as by the LDA one. This is due to missing Van der Waals interactions in both, LDA and EXX functionals.Comment: 4 Fig

    Exact Kohn-Sham exchange kernel for insulators and its long-wavelength behavior

    Full text link
    We present an exact expression for the frequency-dependent Kohn-Sham exact-exchange (EXX) kernel for periodic insulators, which can be employed for the calculation of electronic response properties within time-dependent (TD) density-functional theory. It is shown that the EXX kernel has a long-wavelength divergence behavior of the exact full exchange-correlation kernel and thus rectifies one serious shortcoming of the adiabatic local-density approximation and generalized-gradient approximations kernels. A comparison between the TDEXX and the GW-approximation-Bethe-Salpeter-equation approach is also made.Comment: two column format 6 pages + 1 figure, to be publisehd in Physical Review

    Density-functional Study of Small Molecules within the Krieger-Li-Iafrate Approximation

    Get PDF
    We report density-functional studies of several small molecules (H2,N2,CO,H2OH_{2}, N_{2}, CO, H_{2}O, and CH4CH_{4}) within the Krieger-Li-Iafrate (KLI) approximation to the exact Kohn-Sham local exchange potential, using a three-dimensional real-space finite-difference pseudopotential method. It is found that exchange-only KLI leads to markedly improved eigenvalue spectra compared to those obtained within the standard local-density approximation (LDA), the generalized gradient approximation (GGA), and the Hartree-Fock (HF) method. For structural properties, exchange-only KLI results are close to the corresponding HF values. We find that the addition of LDA or GGA correlation energy functionals to the KLI exact exchange energy functional does not lead to systematic improvements.Comment: 16 pages including 1 fugure, to be published in Phys. Rev. A Nov. 1 '9

    Trial wave functions for High-Pressure Metallic Hydrogen

    Full text link
    Many body trial wave functions are the key ingredient for accurate Quantum Monte Carlo estimates of total electronic energies in many electron systems. In the Coupled Electron-Ion Monte Carlo method, the accuracy of the trial function must be conjugated with the efficiency of its evaluation. We report recent progress in trial wave functions for metallic hydrogen implemented in the Coupled Electron-Ion Monte Carlo method. We describe and characterize several types of trial functions of increasing complexity in the range of the coupling parameter 1.0≤rs≤1.551.0 \leq r_s \leq1.55. We report wave function comparisons for disordered protonic configurations and preliminary results for thermal averages.Comment: 11 pages, 6 figures, submitted to Computer Physics Communication

    Towards an Accurate Identification of Pyloric Neuron Activity with VSDi

    Get PDF
    Voltage-sensitive dye imaging (VSDi) which enables simultaneous optical recording of many neurons in the pyloric circuit of the stomatogastric ganglion is an important technique to supplement electrophysiological recordings. However, utilising the technique to identify pyloric neurons directly is a computationally exacting task that requires the development of sophisticated signal processing procedures to analyse the tri-phasic pyloric patterns generated by these neurons. This paper presents our work towards commissioning such procedures. The results achieved to date are most encouraging

    Comparative study of density functional theories of the exchange-correlation hole and energy in silicon

    Full text link
    We present a detailed study of the exchange-correlation hole and exchange-correlation energy per particle in the Si crystal as calculated by the Variational Monte Carlo method and predicted by various density functional models. Nonlocal density averaging methods prove to be successful in correcting severe errors in the local density approximation (LDA) at low densities where the density changes dramatically over the correlation length of the LDA hole, but fail to provide systematic improvements at higher densities where the effects of density inhomogeneity are more subtle. Exchange and correlation considered separately show a sensitivity to the nonlocal semiconductor crystal environment, particularly within the Si bond, which is not predicted by the nonlocal approaches based on density averaging. The exchange hole is well described by a bonding orbital picture, while the correlation hole has a significant component due to the polarization of the nearby bonds, which partially screens out the anisotropy in the exchange hole.Comment: 16 pages, 5 figures, RevTeX, added conten

    Quasi-molecular and atomic phases of dense solid hydrogen

    Full text link
    The high-pressure phases of solid hydrogen are of fundamental interest and relevant to the interior of giant planets; however, knowledge of these phases is far from complete. Particle swarm optimization (PSO) techniques were applied to a structural search, yielding hitherto unexpected high-pressure phases of solid hydrogen at pressures up to 5 TPa. An exotic quasi-molecular mC24 structure (space group C2/c, stable at 0.47-0.59 TPa) with two types of intramolecular bonds was predicted, providing a deeper understanding of molecular dissociation in solid hydrogen, which has been a mystery for decades. We further predicted the existence of two atomic phases: (i) the oC12 structure (space group Cmcm, stable at > 2.1 TPa), consisting of planar H3 clusters, and (ii) the cI16 structure, previously observed in lithium and sodium, stable above 3.5 TPa upon consideration of the zero-point energy. This work clearly revised the known zero-temperature and high-pressure (>0.47 TPa) phase diagram for solid hydrogen and has implications for the constituent structures of giant planets.Comment: accepted in The Journal of Physical Chemistr

    Optimized Effective Potential for Extended Hubbard Model

    Full text link
    Antiferromagnetic and charge ordered Hartree-Fock solutions of the one-band Hubbard model with on-site and nearest-neighbor Coulomb repulsions are exactly mapped onto an auxiliary local Kohn-Sham (KS) problem within a density-functional theory. The mapping provides a new insight into the interpretation of the KS equations. (i) With an appropriate choice of the basic variable, there is a universal form of the KS potential, which is applicable both for the antiferromagnetic and the charge ordered solutions. (ii) The Kohn-Sham and Hartree-Fock eigenvalues are interconnected by a scaling transformation. (iii) The band-gap problem is attributed to the derivative discontinuity of the basic variable as the function of the electron number, rather than a finite discontinuity of the KS potential. (iv) It is argued that the conductivity gap and the energies of spin-wave excitations can be entirely defined by the parameters of the ground state and the KS eigenvalues.Comment: 21 page, 3 figure

    Exchange energy in the local Airy gas approximation

    Get PDF
    The Airy gas model of the edge electron gas is used to construct an exchange-energy functional which is an alternative to those obtained in the local density and generalized gradient approximations. Test calculations for rare gas atoms, molecules, solids and surfaces show that the Airy gas functional performs better than the local density approximation in all cases and better than the generalized gradient approximation for solids and surfaces. Typeset using REVTEX 1 Since the pioneering papers on density functional theory (DFT) [1,2] there has been a constant search for exchange-correlation functionals of chemical accuracy. This includes the works on the generalized gradient approximation (GGA) [3–7] which are dedicated efforts to construct local functionals for inhomogeneous systems ranging from atoms to solids based on the uniform electron gas, i.e., the local density approximation (LDA), and density gradient corrections, as well as the development of a number gradien
    • …
    corecore