4 research outputs found

    Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes

    No full text
    Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT), Allogeneic Juvenile Chondrocyte Implantation (NuQu®), and Matrix-Induced Autologous Chondrocyte Implantation (MACI). Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml) and incubation time (1 and 12 h), combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen) of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation

    Chondrocyte-based intraoperative processing strategies for the biological augmentation of a polyurethane meniscus replacement

    No full text
    <p><b>Purpose/aim of study</b>: Menisectomies account for over 1.5 million surgical interventions in Europe annually, and there is a growing interest in regenerative strategies to improve outcomes in meniscal replacement. The overall objective of this study was to evaluate the role of intraoperatively applied fresh chondrocyte (FC) isolates compared to minced cartilage (MC) fragments, used without cell isolation, to improve bioactivity and tissue integration when combined with a polyurethane replacement.</p> <p><b>Materials and methods</b>: First, to optimize the intraoperative cell isolation protocol, caprine articular cartilage biopsies were digested with 750 U/ml or 3000 U/ml collagenase type II (ratio of 10 ml per g of tissue) for 30 min, 1 h or 12 h with constant agitation and compared to culture-expanded chondrocytes in terms of matrix deposition when cultured on polyurethane scaffolds. Finally, FCs and MC-augmented polyurethane scaffolds were evaluated in a caprine meniscal explant model to assess the potential enhancements on tissue integration strength.</p> <p><b>Results</b>: Adequate numbers of FCs were harvested using a 30 min chondrocyte isolation protocol and were found to demonstrate improved matrix deposition compared to standard culture-expanded cells <i>in vitro</i>. Upon evaluation in a meniscus explant defect model, both FCs and MC showed improved matrix deposition at the tissue-scaffold interface and enhanced push-out strength, fourfold and 2.5-fold, respectively, compared with the acellular implant.</p> <p><b>Conclusions</b>: Herein, we have demonstrated a novel approach that could be applied intraoperatively, using FCs or MC for improved tissue integration with a polyurethane meniscal replacement.</p

    Clinical Outcomes of 3D-Printed Bioresorbable Scaffolds for Bone Tissue Engineering&mdash;A Pilot Study on 126 Patients for Burrhole Covers in Subdural Hematoma

    No full text
    Burrhole craniostomy is commonly performed for subdural hematoma (SDH) evacuation, but residual scalp depressions are often cosmetically suboptimal for patients. OsteoplugTM, a bioresorbable polycaprolactone burrhole cover, was introduced by the National University Hospital, Singapore, in 2006 to cover these defects, allowing osseous integration and vascular ingrowth. However, the cosmetic and safety outcomes of OsteoplugTM-C&mdash;the latest (2017) iteration, with a chamfered hole for subdural drains&mdash;remain unexplored. Data were collected from a single institution from April 2017 to March 2021. Patient-reported aesthetic outcomes (Aesthetic Numeric Analog (ANA)) and quality of life (EQ-5D-3L including Visual Analog Scale (VAS)) were assessed via telephone interviews. Clinical outcomes included SDH recurrence, postoperative infections, and drain complications. OsteoplugTM-C patients had significantly higher satisfaction and quality of life compared to those without a burrhole cover (ANA: 9 [7, 9] vs. 7 [5, 8], p = 0.019; VAS: 85 [75, 90] vs. 70 [50, 80], p = 0.021), and the absence of a burrhole cover was associated with poorer aesthetic outcomes after multivariable adjustment (adjusted OR: 4.55, 95% CI: 1.09&ndash;22.68, p = 0.047). No significant differences in other clinical outcomes were observed between OsteoplugTM-C, OsteoplugTM, or no burrhole cover. Our pilot study supports OsteoplugTM-C and its material polycaprolactone as suitable adjuncts to burrhole craniostomy, improving cosmetic outcomes while achieving comparable safety outcomes
    corecore