478 research outputs found

    Predicting Multi-actor collaborations using Hypergraphs

    Full text link
    Social networks are now ubiquitous and most of them contain interactions involving multiple actors (groups) like author collaborations, teams or emails in an organizations, etc. Hypergraphs are natural structures to effectively capture multi-actor interactions which conventional dyadic graphs fail to capture. In this work the problem of predicting collaborations is addressed while modeling the collaboration network as a hypergraph network. The problem of predicting future multi-actor collaboration is mapped to hyperedge prediction problem. Given that the higher order edge prediction is an inherently hard problem, in this work we restrict to the task of predicting edges (collaborations) that have already been observed in past. In this work, we propose a novel use of hyperincidence temporal tensors to capture time varying hypergraphs and provides a tensor decomposition based prediction algorithm. We quantitatively compare the performance of the hypergraphs based approach with the conventional dyadic graph based approach. Our hypothesis that hypergraphs preserve the information that simple graphs destroy is corroborated by experiments using author collaboration network from the DBLP dataset. Our results demonstrate the strength of hypergraph based approach to predict higher order collaborations (size>4) which is very difficult using dyadic graph based approach. Moreover, while predicting collaborations of size>2 hypergraphs in most cases provide better results with an average increase of approx. 45% in F-Score for different sizes = {3,4,5,6,7}

    Understanding Co-evolution in Large Multi-relational Social Networks

    Full text link
    Understanding dynamics of evolution in large social networks is an important problem. In this paper, we characterize evolution in large multi-relational social networks. The proliferation of online media such as Twitter, Facebook, Orkut and MMORPGs\footnote{Massively Multi-player Online Role Playing Games} have created social networking data at an unprecedented scale. Sony's Everquest 2 is one such example. We used game multi-relational networks to reveal the dynamics of evolution in a multi-relational setting by macroscopic study of the game network. Macroscopic analysis involves fragmenting the network into smaller portions for studying the dynamics within these sub-networks, referred to as `communities'. From an evolutionary perspective of multi-relational network analysis, we have made the following contributions. Specifically, we formulated and analyzed various metrics to capture evolutionary properties of networks. We find that co-evolution rates in trust based `communities' are approximately 60%60\% higher than the trade based `communities'. We also find that the trust and trade connections within the `communities' reduce as their size increases. Finally, we study the interrelation between the dynamics of trade and trust within `communities' and find interesting results about the precursor relationship between the trade and the trust dynamics within the `communities'

    Adversarial Unsupervised Representation Learning for Activity Time-Series

    Full text link
    Sufficient physical activity and restful sleep play a major role in the prevention and cure of many chronic conditions. Being able to proactively screen and monitor such chronic conditions would be a big step forward for overall health. The rapid increase in the popularity of wearable devices provides a significant new source, making it possible to track the user's lifestyle real-time. In this paper, we propose a novel unsupervised representation learning technique called activity2vec that learns and "summarizes" the discrete-valued activity time-series. It learns the representations with three components: (i) the co-occurrence and magnitude of the activity levels in a time-segment, (ii) neighboring context of the time-segment, and (iii) promoting subject-invariance with adversarial training. We evaluate our method on four disorder prediction tasks using linear classifiers. Empirical evaluation demonstrates that our proposed method scales and performs better than many strong baselines. The adversarial regime helps improve the generalizability of our representations by promoting subject invariant features. We also show that using the representations at the level of a day works the best since human activity is structured in terms of daily routinesComment: Accepted at AAAI'19. arXiv admin note: text overlap with arXiv:1712.0952

    360 Quantified Self

    Get PDF
    Wearable devices with a wide range of sensors have contributed to the rise of the Quantified Self movement, where individuals log everything ranging from the number of steps they have taken, to their heart rate, to their sleeping patterns. Sensors do not, however, typically sense the social and ambient environment of the users, such as general life style attributes or information about their social network. This means that the users themselves, and the medical practitioners, privy to the wearable sensor data, only have a narrow view of the individual, limited mainly to certain aspects of their physical condition. In this paper we describe a number of use cases for how social media can be used to complement the check-up data and those from sensors to gain a more holistic view on individuals' health, a perspective we call the 360 Quantified Self. Health-related information can be obtained from sources as diverse as food photo sharing, location check-ins, or profile pictures. Additionally, information from a person's ego network can shed light on the social dimension of wellbeing which is widely acknowledged to be of utmost importance, even though they are currently rarely used for medical diagnosis. We articulate a long-term vision describing the desirable list of technical advances and variety of data to achieve an integrated system encompassing Electronic Health Records (EHR), data from wearable devices, alongside information derived from social media data.Comment: QCRI Technical Repor
    corecore