478 research outputs found
Predicting Multi-actor collaborations using Hypergraphs
Social networks are now ubiquitous and most of them contain interactions
involving multiple actors (groups) like author collaborations, teams or emails
in an organizations, etc. Hypergraphs are natural structures to effectively
capture multi-actor interactions which conventional dyadic graphs fail to
capture. In this work the problem of predicting collaborations is addressed
while modeling the collaboration network as a hypergraph network. The problem
of predicting future multi-actor collaboration is mapped to hyperedge
prediction problem. Given that the higher order edge prediction is an
inherently hard problem, in this work we restrict to the task of predicting
edges (collaborations) that have already been observed in past. In this work,
we propose a novel use of hyperincidence temporal tensors to capture time
varying hypergraphs and provides a tensor decomposition based prediction
algorithm. We quantitatively compare the performance of the hypergraphs based
approach with the conventional dyadic graph based approach. Our hypothesis that
hypergraphs preserve the information that simple graphs destroy is corroborated
by experiments using author collaboration network from the DBLP dataset. Our
results demonstrate the strength of hypergraph based approach to predict higher
order collaborations (size>4) which is very difficult using dyadic graph based
approach. Moreover, while predicting collaborations of size>2 hypergraphs in
most cases provide better results with an average increase of approx. 45% in
F-Score for different sizes = {3,4,5,6,7}
Understanding Co-evolution in Large Multi-relational Social Networks
Understanding dynamics of evolution in large social networks is an important
problem. In this paper, we characterize evolution in large multi-relational
social networks. The proliferation of online media such as Twitter, Facebook,
Orkut and MMORPGs\footnote{Massively Multi-player Online Role Playing Games}
have created social networking data at an unprecedented scale. Sony's Everquest
2 is one such example. We used game multi-relational networks to reveal the
dynamics of evolution in a multi-relational setting by macroscopic study of the
game network. Macroscopic analysis involves fragmenting the network into
smaller portions for studying the dynamics within these sub-networks, referred
to as `communities'. From an evolutionary perspective of multi-relational
network analysis, we have made the following contributions. Specifically, we
formulated and analyzed various metrics to capture evolutionary properties of
networks. We find that co-evolution rates in trust based `communities' are
approximately higher than the trade based `communities'. We also find
that the trust and trade connections within the `communities' reduce as their
size increases. Finally, we study the interrelation between the dynamics of
trade and trust within `communities' and find interesting results about the
precursor relationship between the trade and the trust dynamics within the
`communities'
Adversarial Unsupervised Representation Learning for Activity Time-Series
Sufficient physical activity and restful sleep play a major role in the
prevention and cure of many chronic conditions. Being able to proactively
screen and monitor such chronic conditions would be a big step forward for
overall health. The rapid increase in the popularity of wearable devices
provides a significant new source, making it possible to track the user's
lifestyle real-time. In this paper, we propose a novel unsupervised
representation learning technique called activity2vec that learns and
"summarizes" the discrete-valued activity time-series. It learns the
representations with three components: (i) the co-occurrence and magnitude of
the activity levels in a time-segment, (ii) neighboring context of the
time-segment, and (iii) promoting subject-invariance with adversarial training.
We evaluate our method on four disorder prediction tasks using linear
classifiers. Empirical evaluation demonstrates that our proposed method scales
and performs better than many strong baselines. The adversarial regime helps
improve the generalizability of our representations by promoting subject
invariant features. We also show that using the representations at the level of
a day works the best since human activity is structured in terms of daily
routinesComment: Accepted at AAAI'19. arXiv admin note: text overlap with
arXiv:1712.0952
360 Quantified Self
Wearable devices with a wide range of sensors have contributed to the rise of
the Quantified Self movement, where individuals log everything ranging from the
number of steps they have taken, to their heart rate, to their sleeping
patterns. Sensors do not, however, typically sense the social and ambient
environment of the users, such as general life style attributes or information
about their social network. This means that the users themselves, and the
medical practitioners, privy to the wearable sensor data, only have a narrow
view of the individual, limited mainly to certain aspects of their physical
condition.
In this paper we describe a number of use cases for how social media can be
used to complement the check-up data and those from sensors to gain a more
holistic view on individuals' health, a perspective we call the 360 Quantified
Self. Health-related information can be obtained from sources as diverse as
food photo sharing, location check-ins, or profile pictures. Additionally,
information from a person's ego network can shed light on the social dimension
of wellbeing which is widely acknowledged to be of utmost importance, even
though they are currently rarely used for medical diagnosis. We articulate a
long-term vision describing the desirable list of technical advances and
variety of data to achieve an integrated system encompassing Electronic Health
Records (EHR), data from wearable devices, alongside information derived from
social media data.Comment: QCRI Technical Repor
- …
