109 research outputs found

    Effect of Thermal Annealing on Boron Diffusion, Micro-structural, Electrical and Magnetic properties of Laser Ablated CoFeB Thin Films

    Full text link
    We report on Boron diffusion and subsequent crystallization of Co40_{40}Fe40_{40}B20_{20} (CoFeB) thin films on SiO2_2/Si(001) substrate using pulsed laser deposition. Secondary ion mass spectroscopy reveals Boron diffusion at the interface in both amorphous and crystalline phase of CoFeB. High-resolution transmission electron microscopy reveals a small fraction of nano-crystallites embedded in the amorphous matrix of CoFeB. However, annealing at 400^\circC results in crystallization of CoFe with \textit{bcc} structure along (110) orientation. As-deposited films are non-metallic in nature with the coercivity (Hc_c) of 5Oe while the films annealed at 400^\circC are metallic with a Hc_c of 135Oe.Comment: 16 pages, 6 figure

    Theoretical Investigation of Different Diversity Combining Techniques in Cognitive Radio, Journal of Telecommunications and Information Technology, 2018, nr 3

    Get PDF
    In this paper, the performance of an energy detector in cognitive radio, using different diversity combining techniques, is evaluated. Among many diversity combining techniques, maximal ratio combining (MRC) gives the best results but at the cost of the highest complexity. To design a simpler receiver, it is suggested to use less complex combining techniques, i.e. switched diversity, which provides one of the least complex solutions to combat fading. The paper analyzes two switched diversity schemes, switch examine combining (SEC), and switch examine combining with post examining selection (SECp). A closed form expression determining the probability of detection using MRC, SEC and SECp is derived for various numbers of branches. Detection performance with different diversity combining techniques is compared and the complexity trade-off is observed

    Enhancer-A Time Commit Protocol

    Get PDF
    Abstract-This paper contains content with the investigating the performance implications of providing transaction atomicity for a deadline real time applications operating on distributed data. Considering all the commit protocols and discussing all phases of the commit protocols and examine their working model over different aspects of distributed database. Implementing distributed real time database system(DRTDBS) content which must be design on all level of database architecture to support timely execution of request. The enormous progress in applications of distributed database systems necessitates formulation of an efficient atomic commitment protocol. The efficiency of these protocols is vital when higher transaction throughput is to be supported. The existing blocking commit protocols affect over the capacity of system resources, which worsens in distributed database system Many existing real time commit protocols try to enhance system performance by allowing a committing participant to share its data to an executing participant, thus it reduces data inaccessibility

    Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India

    Get PDF
    In the last six decades, the consumption of reactive nitrogen (Nr) in the form of fertilizer in India has been growing rapidly, whilst the nitrogen use efficiency (NUE) of cropping systems has been decreasing. These trends have led to increasing environmental losses of Nr, threatening the quality of air, soils, and fresh waters, and thereby endangering climate-stability, ecosystems, and human-health. Since it has been suggested that the fertilizer consumption of India may double by 2050, there is an urgent need for scientific research to support better nitrogen management in Indian agriculture. In order to share knowledge and to develop a joint vision, experts from the UK and India came together for a conference and workshop on “Challenges and Opportunities for Agricultural Nitrogen Science in India.” The meeting concluded with three core messages: (1) Soil stewardship is essential and legumes need to be planted in rotation with cereals to increase nitrogen fixation in areas of limited Nr availability. Synthetic symbioses and plastidic nitrogen fixation are possibly disruptive technologies, but their potential and implications must be considered. (2) Genetic diversity of crops and new technologies need to be shared and exploited to reduce N losses and support productive, sustainable agriculture livelihoods. Móring et al. Nitrogen Challenges and Opportunities (3) The use of leaf color sensing shows great potential to reduce nitrogen fertilizer use (by 10–15%). This, together with the usage of urease inhibitors in neem-coated urea, and better management of manure, urine, and crop residues, could result in a 20–25% improvement in NUE of India by 2030
    corecore