14 research outputs found

    Measurement of gene amplifications related to drug resistance in Plasmodium falciparum using droplet digital PCR

    No full text
    Background: Copy number variations (CNVs) of the Plasmodium falciparum multidrug resistance 1 (pfmdr1), P. falciparum plasmepsin2 (pfplasmepsin2) and P. falciparum GTP cyclohydrolase 1 (pfgch1) genes are associated with anti-malarial drug resistance in P. falciparum malaria. Droplet digital PCR (ddPCR) assays have been developed for accurate assessment of CNVs in several human genes. The aim of the present study was to develop and validate ddPCR assays for detection of the CNVs of P. falciparum genes associated with resistance to anti-malarial drugs. Methods: A multiplex ddPCR assay was developed to detect the CNVs in the pfmdr1 and pfplasmepsin2 genes, while a duplex ddPCR assay was developed to detect CNV in the pfgch1 gene. The gene copy number (GCN) quantification limit, as well as the accuracy and precision of the ddPCR assays were determined and compared to conventional quantitative PCR (qPCR). In order to reduce the cost of testing, a multiplex ddPCR assay of two target genes, pfmdr1 and pfplasmepsin2, was validated. In addition, the CNVs of genes of field samples collected from Thailand from 2015 to 2019 (n = 84) were assessed by ddPCR and results were compared to qPCR as the reference assay. Results: There were no significant differences between the GCN results obtained from uniplex and multiplex ddPCR assays for detection of CNVs in the pfmdr1 and pfplasmepsin2 genes (p = 0.363 and 0.330, respectively). Based on the obtained gene copy number quantification limit, the accuracy and percent relative standard deviation (%RSD) value of the multiplex ddPCR assay were 95% and 5%, respectively, for detection of the CNV of the pfmdr1 gene, and 91% and 5% for detection of the CNV of the pfplasmepsin2 gene. There was no significant difference in gene copy numbers assessed by uniplex or duplex ddPCR assays regarding CNV in the pfgch1 gene (p = 0.276). The accuracy and %RSD value of the duplex ddPCR assay were 95% and 4%, respectively, regarding pfgch1 GCN. In the P. falciparum field samples, pfmdr1 and pfplasmepsin2 GCNs were amplified in 15% and 27% of samples from Ubon Ratchathani, Thailand, while pfgch1 GCN was amplified in 50% of samples from Yala, Thailand. There was 100% agreement between the GCN results obtained from the ddPCR and qPCR assays (κ = 1.00). The results suggested that multiplex ddPCR assay is the optional assay for the accurate detection of gene copy number without requiring calibration standards, while the cost and required time are reduced. Based on the results of this study, criteria for GCN detection by ddPCR analysis were generated. Conclusions: The developed ddPCR assays are simple, accurate, precise and cost-effective tools for detection of the CNVs in the pfmdr1, pfplasmepsin2 and pfgch1 genes of P. falciparum. The ddPCR assay is a useful additional tool for the surveillance of anti-malarial drug resistance

    An online mapping database of molecular markers of drug resistance in Plasmodium falciparum: the ACT Partner Drug Molecular Surveyor

    No full text
    Abstract Background Prior to this project, only a handful of online visualizations existed for exploring the published literature on molecular markers of antimalarial drug resistance, and none specifically for the markers associated with Plasmodium falciparum resistance to the partner drugs in artemisinin-based combination therapy (ACT). Molecular information is collected in studies with different designs, using a variety of molecular methodologies and data analysis strategies, making it difficult to compare across studies. The purpose of this project was to develop a free online tool, which visualizes the widely published data on molecular markers of antimalarial drug resistance, starting with the two genes pfcrt and pfmdr-1, associated with resistance to the three most common partner drugs; amodiaquine, lumefantrine and mefloquine. Methods A literature review was conducted, and a standardized method was used to extract data from publications, and critical decisions on visualization were made. A global geospatial database was developed of specific pfmdr1 and pfcrt single nucleotide polymorphisms and pfmdr1 copy number variation. An informatics framework was developed that allowed flexibility in development of the tool over time and efficient adaptation to different source data. Results The database discussed in this paper has pfmdr1 and pfcrt marker prevalence information, from 579 geographic sites in 76 different countries, including results from over 86,000 samples from 456 articles published January 2001–May 2017. The ACT Partner Drugs Molecular Surveyor was launched by the WorldWide Antimalarial Resistance Network (WWARN) in March 2015 and it has attracted over 3000 unique visitors since then. Presented here is a demonstration of how the Surveyor database can be explored to monitor local, temporal changes in the prevalence of molecular markers. Here publications up to May 2017 were included, however the online ACT partner drug Molecular Surveyor is continuously updated with new data and relevant markers. Conclusions The WWARN ACT Partner Drugs Molecular Surveyor summarizes data on resistance markers in the pfmdr1 and pfcrt genes. The database is fully accessible, providing users with a rich resource to explore and analyze, and thus utilize a centralized, standardized database for different purposes. This open-source software framework can be adapted to other data, as demonstrated by the subsequent launch of the Artemisinin Molecular Surveyor and the Vivax Surveyor

    Probit analysis.

    No full text
    <p>The 95% probability of detecting parasitaemia as low as 10.674 parasites/mL when high volume of blood samples was applied with <i>Plasmodium</i> genus ddPCR assay.</p

    The one-dimensional (1D) ddPCR results from Bio-Rad QX100TM Droplet Reader of <i>18S rRNA Plasmodium</i> genus detection and quantification assay.

    No full text
    <p>The different amplitudes of positive droplets were observed when different PCR annealing temperatures were applied (A10: 65°C, D10: 62°C, E10: 60°C, F10: 59°C, H10: 57°C, F09: 60°C for negative control). Threshold for positive detection is 2500.</p

    The column bar graphs show <i>18S rRNA</i> copies/mL of blood obtained from single reaction ddPCR and duplex ddPCR assays.

    No full text
    <p>Mean 95% CI of <i>18S rRNA</i> of <i>P</i>. <i>falciparum</i> (5a), <i>P</i>. <i>vivax</i> (5b), <i>P</i>. <i>malariae</i> (5c) and <i>P</i>. <i>ovale</i> (5d).</p

    Ten-year persistence and evolution of Plasmodium falciparum antifolate and antisulfonamide resistance markers pfdhfr and pfdhps in three Asian countries

    No full text
    Background The amplification of GTP cyclohydrolase 1 (pfgch1) in Plasmodium falciparum has been linked to the upregulation of the pfdhfr and pfdhps genes associated with resistance to the antimalarial drug sulfadoxine-pyrimethamine. During the 1990s and 2000s, sulfadoxinepyrimethamine was withdrawn from use as first-line treatment in southeast Asia due to clinical drug resistance. This study assessed the temporal and geographic changes in the prevalence of pfdhfr and pfdhps gene mutations and pfgch1 amplification a decade after sulfadoxine-pyrimethamine had no longer been widely used. Methods A total of 536 P. falciparum isolates collected from clinical trials in Thailand, Cambodia, and Lao PDR between 2008 and 2018 were assayed. Single nucleotide polymorphisms of the pfdhfr and pfdhps genes were analyzed using nested PCR and Sanger sequencing. Gene copy number variations of pfgch1 were investigated using real-time polymerase chain reaction assay. Results Sequences of the pfdhfr and pfdhps genes were obtained from 96% (517/536) and 91% (486/536) of the samples, respectively. There were 59 distinct haplotypes, including single to octuple mutations. The two major haplotypes observed included IRNI-AGEAA (25%) and IRNL-SGKGA (19%). The sextuple mutation IRNL-SGKGA increased markedly over time in several study sites, including Pailin, Preah Vihear, Ratanakiri, and Ubon Ratchathani, whereas IRNI-AGEAA decreased over time in Preah Vihear, Champasak, and Ubon Ratchathani. Octuple mutations were first observed in west Cambodia in 2011 and subsequently in northeast Cambodia, as well as in southern Laos by 2018. Amplification of the pfgch1 gene increased over time across the region, particularly in northeast Thailand close to the border with Laos and Cambodia. Conclusion Despite the fact that SP therapy was discontinued in Thailand, Cambodia, and Laos decades ago, parasites retained the pfdhfr and pfdhps mutations. Numerous haplotypes were found to be prevalent among the parasites. Frequent monitoring of pfdhfr and pfdhps in these areas is required due to the relatively rapid evolution of mutation patterns

    Ten-year persistence and evolution of Plasmodium falciparum antifolate and anti-sulfonamide resistance markers pfdhfr and pfdhps in three Asian countries.

    Get PDF
    BackgroundThe amplification of GTP cyclohydrolase 1 (pfgch1) in Plasmodium falciparum has been linked to the upregulation of the pfdhfr and pfdhps genes associated with resistance to the antimalarial drug sulfadoxine-pyrimethamine. During the 1990s and 2000s, sulfadoxine-pyrimethamine was withdrawn from use as first-line treatment in southeast Asia due to clinical drug resistance. This study assessed the temporal and geographic changes in the prevalence of pfdhfr and pfdhps gene mutations and pfgch1 amplification a decade after sulfadoxine-pyrimethamine had no longer been widely used.MethodsA total of 536 P. falciparum isolates collected from clinical trials in Thailand, Cambodia, and Lao PDR between 2008 and 2018 were assayed. Single nucleotide polymorphisms of the pfdhfr and pfdhps genes were analyzed using nested PCR and Sanger sequencing. Gene copy number variations of pfgch1 were investigated using real-time polymerase chain reaction assay.ResultsSequences of the pfdhfr and pfdhps genes were obtained from 96% (517/536) and 91% (486/536) of the samples, respectively. There were 59 distinct haplotypes, including single to octuple mutations. The two major haplotypes observed included IRNI-AGEAA (25%) and IRNL-SGKGA (19%). The sextuple mutation IRNL-SGKGA increased markedly over time in several study sites, including Pailin, Preah Vihear, Ratanakiri, and Ubon Ratchathani, whereas IRNI-AGEAA decreased over time in Preah Vihear, Champasak, and Ubon Ratchathani. Octuple mutations were first observed in west Cambodia in 2011 and subsequently in northeast Cambodia, as well as in southern Laos by 2018. Amplification of the pfgch1 gene increased over time across the region, particularly in northeast Thailand close to the border with Laos and Cambodia.ConclusionDespite the fact that SP therapy was discontinued in Thailand, Cambodia, and Laos decades ago, parasites retained the pfdhfr and pfdhps mutations. Numerous haplotypes were found to be prevalent among the parasites. Frequent monitoring of pfdhfr and pfdhps in these areas is required due to the relatively rapid evolution of mutation patterns
    corecore