45 research outputs found

    Structurally Homologous All β-Barrel Proteins Adopt Different Mechanisms of Folding

    Get PDF
    AbstractAcidic fibroblast growth factors from human (hFGF-1) and newt (nFGF-1) (Notopthalamus viridescens) are 16-kDa, all β-sheet proteins with nearly identical three-dimensional structures. Guanidine hydrochloride (GdnHCl)-induced unfolding of hFGF-1 and nFGF-1 monitored by fluorescence and far-UV circular dichroism (CD) shows that the FGF-1 isoforms differ significantly in their thermodynamic stabilities. GdnHCl-induced unfolding of nFGF-1 follows a two-state (Native state to Denatured state(s)) mechanism without detectable intermediate(s). By contrast, unfolding of hFGF-1 monitored by fluorescence, far-UV circular dichroism, size-exclusion chromatography, and NMR spectroscopy shows that the unfolding process is noncooperative and proceeds with the accumulation of stable intermediate(s) at 0.96M GdnHCl. The intermediate (in hFGF-1) populated maximally at 0.96M GdnHCl has molten globule-like properties and shows strong binding affinity to the hydrophobic dye, 1-Anilino-8-naphthalene sulfonate (ANS). Refolding kinetics of hFGF-1 and nFGF-1 monitored by stopped-flow fluorescence reveal that hFGF-1 and nFGF-1 adopts different folding mechanisms. The observed differences in the folding/unfolding mechanisms of nFGF-1 and hFGF-1 are proposed to be either due to differential stabilizing effects of the charged denaturant (Gdn+ Cl−) on the intermediate state(s) and/or due to differences in the structural interactions stabilizing the native conformation(s) of the FGF-1 isoforms

    Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All polypeptide backbones have the potential to form amyloid fibrils, which are associated with a number of degenerative disorders. However, the likelihood that amyloidosis would actually occur under physiological conditions depends largely on the amino acid composition of a protein. We explore using a naive Bayesian classifier and a weighted decision tree for predicting the amyloidogenicity of immunoglobulin sequences.</p> <p>Results</p> <p>The average accuracy based on leave-one-out (LOO) cross validation of a Bayesian classifier generated from 143 amyloidogenic sequences is 60.84%. This is consistent with the average accuracy of 61.15% for a holdout test set comprised of 103 AM and 28 non-amyloidogenic sequences. The LOO cross validation accuracy increases to 81.08% when the training set is augmented by the holdout test set. In comparison, the average classification accuracy for the holdout test set obtained using a decision tree is 78.64%. Non-amyloidogenic sequences are predicted with average LOO cross validation accuracies between 74.05% and 77.24% using the Bayesian classifier, depending on the training set size. The accuracy for the holdout test set was 89%. For the decision tree, the non-amyloidogenic prediction accuracy is 75.00%.</p> <p>Conclusions</p> <p>This exploratory study indicates that both classification methods may be promising in providing straightforward predictions on the amyloidogenicity of a sequence. Nevertheless, the number of available sequences that satisfy the premises of this study are limited, and are consequently smaller than the ideal training set size. Increasing the size of the training set clearly increases the accuracy, and the expansion of the training set to include not only more derivatives, but more alignments, would make the method more sound. The accuracy of the classifiers may also be improved when additional factors, such as structural and physico-chemical data, are considered. The development of this type of classifier has significant applications in evaluating engineered antibodies, and may be adapted for evaluating engineered proteins in general.</p

    Crumpled structure of the custom hydrophobic lytic peptide cecropin B3

    No full text
    [[abstract]]The solution structure of a custom lytic peptide, cecropin B3 (CB3), having two identical hydrophobic segments on both the N- and C-termini, was investigated by two-dimensional NMR spectroscopy. The need to determine the structure of this peptide is rooted in its specific ability to lyse lipid layers that have a high content of anionic lipid. The lytic activities of CB3 on cell membranes including cancer cells and bacteria is found to be less than cecropin B1. The results show that CB3 has four discrete segments forming alpha helical structures. The crumpled structure of CB3 provides evidence for the lysis of the lipid layer being via a pathway that differs from pore formation. The results in this study provide strong clues towards a rational design for a potent antimicrobial and antitumor peptide.[[fileno]]2010329010064[[department]]化學

    NUCLEAR-POWER PLANT OPTIMAL-CONTROL BY SUCCESSIVE LINEAR-PROGRAMMING

    No full text

    Conformational study of a custom antibacterial peptide cecropin B1: implications of the lytic activity

    No full text
    Cecropin B1 (CB1) with two amphipathic alpha-helical segments is a derivative of the natural antibacterial peptide, cecropin B. The assays of cell lysis show that, compared with cecropin A (CA), CB1 has a similar ability to lyse bacteria with a higher potency (two- to six-fold higher) in killing cancer cells. The difference may be due to the fact that the peptides possess different structures and sequences. In this study, the solution structure of CB1 in 20\% hexafluoroisopropanol was determined by two-dimensional nuclear magnetic resonance (NMR) spectroscopy. The H-1 NMR resonances were assigned. A total of 350 inter-proton distances were used to calculate the solution structure of CB1. The final ensemble structures were well converged, showing the minimum root mean square deviation. The results indicate that CB1 has two stretches of helices spanning from residues 3 to 22 and from residues 26 to 33, which are connected by a hinge section formed by Gly-23 and Pro-24. Lys-25 is partially incorporated in the hinge region. The bent angle between two helical segments located in two planes was between 100 and 110 degrees. With comparisons of the known NMR structure of CA and its activities on bacteria and cancer cells, the structure-function relationship of the peptides is discussed. (C) 2000 Elsevier Science B.V. All rights reserved

    Crumpled structure of the custom hydrophobic lytic peptide cecropin B3

    No full text
    The solution structure of a custom lytic peptide, cecropin B3 (CB3), having two identical hydrophobic segments on both the N- and C-termini, was investigated by two-dimensional NMR spectroscopy. The need to determine the structure of this peptide is rooted in its specific ability to lyse lipid layers that have a high content of anionic lipid. The lytic activities of CB3 on cell membranes including cancer cells and bacteria is found to be less than cecropin B1. The results show that CB3 has four discrete segments forming alpha helical structures. The crumpled structure of CB3 provides evidence for the lysis of the lipid layer being via a pathway that differs from pore formation. The results in this study provide strong clues towards a rational design for a potent antimicrobial and antitumor peptide
    corecore