32 research outputs found

    Polymorphism in cocrystals of urea:4,4 `-bipyridine and salicylic acid:4,4 `-bipyridine

    No full text
    Polymorphic cocrystals of urea:4,4'-bipyridine and salicylic acid: 4,4'-bipyridine were obtained by crystallization from different solvents. The urea tape is a rare phenomenon in cocrystals but it is consistent in urea:4,4'-bipyridine polymorphic cocrystals. The polymorph obtained from MeCN has symmetrical N-H...N hydrogen bond distances on either side of the urea tape. However, the other form obtained from MeOH has unsymmetrical N-H...N hydrogen bond lengths. In the polymorphic cocrystals of salicylic acid:4,4'-bipyridine, the basic supramolecular synthon acid-pyridine is the same but the 3D packing is different. Both the polymorphic pairs of cocrystals come under the category of packing polymorphs. All polymorphs were characterized by single-crystal X-ray diffraction (SCXRD), PXRD, DSC, FT-IR and HSM. N-H...N and the acid-pyridine supramolecular synthons were insulated by FT-IR vibrational spectroscopy

    Synthon Modularity in 4-Hydroxybenzamide-Dicarboxylic Acid Cocrystals

    No full text
    A family of 4-hydroxybenzamide-dicarboxylic acid cocrystals has been designed and subsequently isolated and characterized. The design strategy follows from an understanding of synthon modularity in crystal structures of monocomponent crystals such as gamma-quinol, 4,4'-biphenol and 4-hydroxybenzoic acid. These monocomponent structures contain infinite O-H center dot center dot center dot O-H center dot center dot center dot O-H center dot center dot center dot cooperative synthons linked with molecular connectors such as phenyl and biphenyl, and supramolecular connectors such as the acid dimer in 4-hydroxybenzoic acid. The cocrystal design was influenced by the anticipation that dicarboxylic acids can form a supramolecular connector mediated by acid-amide synthons with 4-hydroxybenzamide, which can then form the phenol O-H center dot center dot center dot O-H center dot center dot center dot O-H center dot center dot center dot infinite synthon. Effectively, the acid-amide and phenol synthons are insulated. The short axis of such a structure will be around 5.12 angstrom and this is borne out in 2:1 cocrystals of 4-hydroxybenzamide with oxalic, succinic, fumaric, glutaric (two forms) and pimelic acids. Hydrated variations of this structure type are seen in the cocrystals obtained with adipic and sebacic acids

    4-Hydroxybenzamide 1,4-dioxane hemisolvate

    No full text
    The asymmetric unit of the title compound, C7H7NO2·0.5C4H8O2, is composed of one 4-hydroxybenzamide molecule and half of a 1,4-dioxane molecule. The complete dioxin molecule is generated by crystallographic inversion symmetry. The crystal has an extensive system of hydrogen bonds, in which the three donor H atoms are fully utilized: these result in amide–amide homodimers, and N—H...O(dioxane) and O—H...O(amide) links

    Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering

    No full text
    The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multicomponent crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2 : 1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N-H center dot center dot center dot N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape

    Designing ternary cocrystals with hydrogen bonds and halogen bonds

    No full text
    A graded selection of hydrogen bonds and halogen bonds allows for the isolation of 2 : 1 : 1 ternary cocrystals of the general form 4-nitrobenzamide : diacid : 1,4-dihalogenated benzene, which are mediated by the amide-acid and I center dot center dot center dot O2N supramolecular synthons

    Synthon Modularity in 4‑Hydroxybenzamide–Dicarboxylic Acid Cocrystals

    No full text
    A family of 4-hydroxybenzamide–dicarboxylic acid cocrystals has been designed and subsequently isolated and characterized. The design strategy follows from an understanding of synthon modularity in crystal structures of monocomponent crystals such as γ-quinol, 4,4′-biphenol and 4-hydroxybenzoic acid. These monocomponent structures contain infinite O–H···O–H···O–H··· cooperative synthons linked with molecular connectors such as phenyl and biphenyl, and supramolecular connectors such as the acid dimer in 4-hydroxybenzoic acid. The cocrystal design was influenced by the anticipation that dicarboxylic acids can form a supramolecular connector mediated by acid–amide synthons with 4-hydroxybenzamide, which can then form the phenol O–H···O–H···O–H··· infinite synthon. Effectively, the acid–amide and phenol synthons are insulated. The short axis of such a structure will be around 5.12 Å and this is borne out in 2:1 cocrystals of 4-hydroxybenzamide with oxalic, succinic, fumaric, glutaric (two forms) and pimelic acids. Hydrated variations of this structure type are seen in the cocrystals obtained with adipic and sebacic acids

    Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different

    No full text
    CONSPECTUS: The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen center dot center dot center dot halogen interactions (X center dot center dot center dot X) and halogen center dot center dot center dot heteroatom interactions (X center dot center dot center dot B). Many X center dot center dot center dot X and almost all X center dot center dot center dot B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms halogen and hydrogen are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X center dot center dot center dot X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen center dot center dot center dot halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be used in the design of ternary cocrystals. Structural modularity in which an entire crystal structure is defined as a combination of modules is rationalized on the basis of the intermediate strength of a halogen bond. The specific directionality of the halogen bond makes it a good tool to achieve orthogonality in molecular crystals. Mechanical properties can be tuned systematically by varying these orthogonally oriented halogen center dot center dot center dot halogen interactions. In a further development, halogen bonds are shown to play a systematic role in organization of LSAMs (long range synthon aufbau module), which are bigger structural units containing multiple synthons. With a formal definition in place, this may be the right time to look at differences between halogen bonds and hydrogen bonds and exploit them in more subtle ways in crystal engineering

    Nucleophilic Substitution at a Coordinatively Saturated Five-Membered NHC∙Haloborane Centre

    No full text
    In this paper, we have used a saturated five-membered N-Heterocyclic carbene (5SIDipp = 1,3-bis-(2,6-diisopropylphenyl)imidazolin-2-ylidine) for the synthesis of SNHC-haloboranes adducts and their further nucleophilic substitutions to put unusual functional groups at the central boron atom. The reaction of 5-SIDipp with RBCl2 yields Lewis-base adducts, 5-SIDipp·RBCl2 [R = H (1), Ph (2)]. The hydrolysis of 1 gives the NHC stabilized boric acid, 5-SIDipp·B(OH)3 (3), selectively. Replacement of chlorine atoms from 1 and 2 with one equivalent of AgOTf led to the formation of 5-SIDipp·HBCl(OTf) (4) and 5-SIDipp·PhBCl(OTf) (5a), where all the substituents on the boron atoms are different. The addition of two equivalents of AgNO3 to 2 leads to the formation of rare di-nitro substituted 5-SIDipp·BPh(NO3)2 (6). Further, the reaction of 5-SIDipp with B(C6F5)3 in tetrahydrofuran and diethyl ether shows a frustrated Lewis pair type small molecule activated products, 7 and 8

    Shape and size mimicry in the design of ternary molecular solids: towards a robust strategy for crystal engineering

    No full text
    2- and 5-methylresorcinol form co-crystals with 4,4'-bipyridine in which some of the bipyridine molecules are loosely bound. These molecules can be replaced with other molecules of a similar shape and size to give a general method for the engineering of a ternary co-crystal

    Synthon modularity in Cocrystals of 4-Bromobenzamide with n-Alkanedicarboxylic acids: type I and type ll Halogen center dot center dot center dot Halogen interactions

    No full text
    A Cambridge Structural Database (CSD) analysis on halogen center dot center dot center dot halogen contacts (X...X) in organic crystals has been carried out to review the classification criteria for type I, type II, and quasi type I/II halogen interactions. Trends observed in previous CSD analyses of the phenomenon are reinforced in the present study. The manner in which these interactions are manifested in cocrystals of 4-bromobenzamide and dicarboxylic acid is examined. The design strategy for these cocrystals uses synthon theory and follows from an understanding of the crystal structures of gamma-hydroquinone and a previously studied set of 4-hydroxybenzamide dicarboxylic acid cocrystals, making use of Br/OH isostructurality. All cocrystals are obtained by clean insertion of dicarboxylic acids between 4-bromobenzamide molecules. The strategy is deliberate and the prediction of synthons done well in advance, as evidenced from the robustness of the acid-amide heterosynthons in all nine crystal structures, with no aberrant structures in the crystallization experiments. Formation of the acid-amide synthon in these cocrystals is identified with IR spectroscopy. The packing in these cocrystals can be distinguished in terms of whether the Br...Br interactions are type I or II. Eight sets of dimorphs were retrieved from the CSD, wherein the basis of the polymorphism is that one crystal has a type I Br...Br interaction, while the other has a type II interaction
    corecore