14 research outputs found

    Total body CD4+ T cell dynamics in treated and untreated SIV infection revealed by in vivo imaging

    Get PDF
    The peripheral blood represents only a small fraction of the total number of lymphocytes in the body. To develop a more thorough understanding of T cell dynamics, including the effects of SIV/SHIV/HIV infection on immune cell depletion and immune reconstitution following combination antiretroviral therapy (cART), one needs to utilize approaches that allow direct visualization of lymphoid tissues. In the present study, noninvasive in vivo imaging of the CD4+ T cell pool has revealed that the timing of the CD4+ T cell pool reconstitution following initiation of ART in SIV-infected nonhuman primates (NHPs) appears seemingly stochastic among clusters of lymph nodes within the same host. At 4 weeks following initiation or interruption of cART, the changes observed in peripheral blood (PB) are primarily related to changes in the whole-body CD4 pool rather than changes in lymphocyte trafficking. Lymph node CD4 pools in long-term antiretroviral-treated and plasma viral load-suppressed hosts appear suboptimally reconstituted compared with healthy controls, while splenic CD4 pools appear similar between the 2 groups

    Viral dissemination and immune activation modulate antiretroviral drug levels in lymph nodes of SIV-infected rhesus macaques

    Get PDF
    Introduction and methodsTo understand the relationship between immunovirological factors and antiretroviral (ARV) drug levels in lymph nodes (LN) in HIV therapy, we analyzed drug levels in twenty-one SIV-infected rhesus macaques subcutaneously treated with daily tenofovir (TFV) and emtricitabine (FTC) for three months.ResultsThe intracellular active drug-metabolite (IADM) levels (TFV-dp and FTC-tp) in lymph node mononuclear cells (LNMC) were significantly lower than in peripheral blood mononuclear cells (PBMC) (P≤0.005). Between Month 1 and Month 3, IADM levels increased in both LNMC (P≤0.001) and PBMC (P≤0.01), with a steeper increase in LNMC (P≤0.01). The viral dissemination in plasma, LN, and rectal tissue at ART initiation correlated negatively with IADM levels at Month 1. Physiologically-based pharmacokinetic model simulations suggest that, following subcutaneous ARV administration, ART-induced reduction of immune activation improves the formation of active drug-metabolites through modulation of kinase activity and/or through improved parent drug accessibility to LN cellular compartments.ConclusionThese observations have broad implications for drugs that need to phosphorylate to exert their pharmacological activity, especially in the settings of the pre-/post-exposure prophylaxis and efficacy of antiviral therapies targeting pathogenic viruses such as HIV or SARS-CoV-2 replicating in highly inflammatory anatomic compartments

    Antiretroviral Tissue Kinetics: In Vivo Imaging Using Positron Emission Tomographyâ–¿

    No full text
    Our current knowledge on the antiviral efficacy, dosing, and toxicity of available highly active antiretroviral therapy regimens is mostly derived from plasma or blood kinetics of anti-human immunodeficiency virus (anti-HIV) drugs. However, the blood comprises only 2% of the total target cells in the body. Tissue drug levels may differ substantially from corresponding plasma levels, and drug distribution processes may be characterized by high intertissue variability, leading to suboptimal target site concentrations and the potential risk for therapeutic failures. Positron emission tomography has greatly expanded the scope of the pharmacokinetic measurements that can be performed noninvasively in animal models or humans. We have prepared [18F]FPMPA, a fluorine-18-radiolabeled analogue of tenofovir, to study antiretroviral tissue kinetics in vivo noninvasively and tested the imaging probe in rats. The biodistribution of the fluorine-18 analogue closely follows that of nonfluorinated tenofovir. Compared to that in the blood, the levels of penetration of the antiretroviral drug were found to be significantly reduced in the spleen and submandibular lymph nodes (∼2-fold), in the mesenteric lymph nodes and the testes (∼4-fold), and in the brain compartment (∼25-fold). Intersubject variability of the trough drug concentration (measured at 120 min) in certain tissues, like the colon (coefficient of variation, >100%), is not reflected by the intersubject variability in the blood compartment (coefficient of variation, 24%). Positron emission tomography imaging of the fluorine-18 analogue revealed the accumulation of the antiretroviral drug in the cortex of the kidneys, a potential correlate of tenofovir-induced nephrotoxicity observed in HIV-1-infected treated patients. Thus, [18F]FPMPA is a promising radiotracer for evaluation of tenofovir biodistribution under carefully controlled drug administration protocols

    Brain 18F-FDG PET of SIV-infected macaques after treatment interruption or initiation

    No full text
    Abstract Background Although rates of severe HIV-associated neurocognitive disorders have declined in the post-antiretroviral treatment (ART) era, subtle deficits persist, possibly exacerbated by treatment non-adherence. The actual effects of ART interruption/initiation on brain glucose metabolism as a reflection of viral replication and neuroinflammation remain unclear. Our study investigates how treatment initiation and interruption alter brain glucose metabolism in SIV-infected macaques, using 18F-FDG PET in correlation with plasma and CSF viral loads (VL) and cytokine levels. Methods SIV-infected macaques (n = 7) underwent ART initiation only, ART interruption only, or both. Five uninfected animals served as controls. 18F-FDG PET imaging was performed at baseline and 1, 3, and 6 months after treatment modification. Mean and maximum standardized uptake values (SUV) for the whole-brain and subregions were calculated. Plasma and CSF VL and cytokine levels were measured. Paired t tests evaluated acute changes in whole-brain SUV from baseline to 1 month, while mixed-effect linear regression models evaluated changes over multiple timepoints and correlated SUV values with disease markers. Results ART interruption was associated with increased SUVmean and SUVmax acutely, after 1 month (SUVmean 95% CI [0.044–0.786 g/ml], p = 0.037; SUVmax 95% CI [0.122–3.167 g/ml], p = 0.041). The correlation between SUV and time, however, was not significant when evaluated across all timepoints. Increased SUVmean and SUVmax correlated with decreased CD4+ and CD8+ T-cell counts and increased plasma VL. SUVmax was positively associated with increases in CSF VL, and there were borderline positive associations between SUVmax and IL-2, and between SUVmean and IL-15. The treatment initiation group showed no associations between imaging and disease biomarkers despite viral suppression, reduced cytokine levels, and increased CD4+ and CD8+ T-cell counts. Conclusions ART interruption is associated with increased brain glucose metabolism within 1 month of treatment cessation, which, in concert with increased levels of pro-inflammatory cytokines in the CSF, may reflect neuroinflammation in the setting of viral rebound. Although we cannot assert neurologic damage in association with cerebral hypermetabolism, it is a concerning outcome of ART non-adherence. Treatment initiation, meanwhile, did not result in significant changes in brain metabolism. HIV-induced neuroinflammation may require a longer period to abate than our follow-up period allowed

    CD4+ levels control the odds of induction of humoral immune responses to tracer doses of therapeutic antibodies.

    No full text
    Rapidly increasing number of therapeutic antibodies are being repurposed to imaging probes for noninvasive diagnosis, as well as monitoring during treatment or disease recurrence. Though antibody-based imaging involves tracer doses (~3 log lower than therapeutic doses), and immune responses are severely reduced in patients with impaired immunity, formation of anti-tracer antibodies (ATA) has been observed hampering further diagnostic monitoring. Here, we explored the potential to develop humoral responses to intravenously administered tracer dose of a monoclonal antibody F(ab΄)2 fragment, and associated with host related immune measures in 49 rhesus macaques categorized into healthy (uninfected controls), SIV-progressors, SIV non-progressors, or total body irradiated (TBI). Antibody fragment administered in tracer amount (~100μg) induced immune responses with significantly lower odds in SIV-progressors or TBI macaques (P<0.005) as compared to healthy animals. Peripheral blood (PB) CD4+ cell counts, but not CD20+ cell levels, were associated with significantly higher risk of developing a humoral response (P<0.001). Doubling the PB CD4+ counts is associated with an odds ratio of developing an immune response of 1.73. Among SIV-infected animals, CD4+ cell count was a stronger predictor of immune response than plasma SIV-RNA levels. Both SIV-progressors and TBI macaques showed higher odds of responses with increasing CD4+ counts, however when compared to healthy or SIV non-progressors with similar CD4+ count, they were still functionally incompetent in generating a response (P<0.01). Moreover, presence of ATA in systemic circulation altered the in vivo biodistribution by increasing hepatic uptake and decreasing plasma radiotracer clearance, with minimal to no binding detected in targeted tissues

    Correlation between radio-HPLC and plasma binding assay.

    No full text
    <p>Strong correlation was observed between plasma binding assay and HPLC assay. Samples were assayed with either F(ab΄)<sub>2</sub>-CD4R1 antibody (brown dots) or F(ab΄)<sub>2</sub>-huOKT4A antibody (red dots). For samples assayed with F(ab΄)<sub>2</sub>-CD4R1, the bootstrap estimate and 95% confidence interval of the Spearman rank correlation between PBA-ratio and HPLC-HM-ratio was -0.88 (-0.91, -0.84), and between PBA-ratio and HPLC-Fab’2-ratio was 0.90 (0.85, 0.93). Similar results were observed for samples assayed with F(ab΄)<sub>2</sub>-huOKT4A.</p

    Maximum intensity projection SPECT images.

    No full text
    <p>Rhesus macaques that developed antibody response to the radiotracer after baseline exposure were subsequently imaged while anti-tracer antibodies were present in the plasma in (A) healthy macaque imaged at 48 hours post-radiotracer injection with intact-huOKT4A labelled with <sup>111</sup>In and scanned using Triad88 (Trionix) camera, (B) SIV-TK infected non-progressor imaged at 4 hours post-radiotracer injection with F(ab΄)<sub>2</sub>-huOKT4A labelled with <sup>99m</sup>Tc and scanned using Triad88 (Trionix) camera, and (C) healthy macaque that underwent total body irradiation prior to 2<sup>nd</sup> exposure and imaged at 4 hours post-radiotracer injection with F(ab΄)<sub>2</sub>-CD4R1 labelled with <sup>99m</sup>Tc and scanned using Symbia T2 (Siemens) camera. Images show increased hepatic uptake and altered biodistribution with minimal to no binding observed in secondary lymphoid organs when imaged in the presence of anti-tracer antibodies. Within each panel, images were adjusted (standardized) for injected dose and body weight. Tissue uptakes were converted to RAINBOW color scale as shown in color bar.</p
    corecore