148 research outputs found

    Corrections to Hawking-like Radiation for a Friedmann-Robertson-Walker Universe

    Full text link
    Recently, a Hamilton-Jacobi method beyond semiclassical approximation in black hole physics was developed by \emph{Banerjee} and \emph{Majhi}\cite{beyond0}. In this paper, we generalize their analysis of black holes to the case of Friedmann-Robertson-Walker (FRW) universe. It is shown that all the higher order quantum corrections in the single particle action are proportional to the usual semiclassical contribution. The corrections to the Hawking-like temperature and entropy of apparent horizon for FRW universe are also obtained. In the corrected entropy, the area law involves logarithmic area correction together with the standard inverse power of area term.Comment: 10 pages, no figures, comments are welcome; v2: references added and some typoes corrected, to appear in Euro.Phys.J.C; v3:a defect corrected. We thank Dr.Elias Vagenas for pointing out a defect of our pape

    Hawking Radiation and Tunneling Mechanism for a New Class of Black Holes in Einstein-Gauss-Bonnet Gravity

    Full text link
    We study the Hawking radiation in a new class of black hole solutions in the Einstein-Gauss-Bonnet theory. The black hole has been argued to have vanishing mass and entropy, but finite Hawking temperature. To check if it really emits radiation, we analyse the Hawking radiation using the original method of quantization of scalar field in the black hole background and the quantum tunneling method, and confirm that it emits radiation at the Hawking temperature. A general formula is derived for the Hawking temperature and backreaction in the tunneling approach. Physical implications of these results are discussed.Comment: 12 pages, v2: Title slightly changed. Motivation and discussions are elaborated, v3: typos corrected to match the published versio

    Strategies to parallelize ILP systems

    Get PDF
    It is well known by Inductive Logic Programming (ILP) practionersthat ILP systems usually take a long time to nd valuable models(theories). The problem is specially critical for large datasets, preventingILP systems to scale up to larger applications. One approach to reducethe execution time has been the parallelization of ILP systems. In thispaper we overview the state-of-the-art on parallel ILP implementationsand present work on the evaluation of some major parallelization strategiesfor ILP. Conclusions about the applicability of each strategy arepresented

    The Role of Radioactivities in Astrophysics

    Full text link
    I present both a history of radioactivity in astrophysics and an introduction to the major applications of radioactive abundances to astronomy

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field

    Full text link
    corecore