140 research outputs found

    Early Experience with the Subcutaneous ICD.

    Get PDF
    The Subcutaneous Internal Cardiac Defibrillator (S-ICD) represents a major advance in the care of patients who have an indication for an internal cardiac defibrillator without pacing indications. Its main advantage is that it can deliver a shock to cardiovert ventricular arrhythmias utilising a tunnelled subcutaneous lead, negating the risks associated with conventional transvenous systems. Initial studies have shown comparable efficacy in cardioversion of induced and spontaneous ventricular tachycardia (VT) and ventricular fibrillation (VF) when compared to conventional transvenous systems. In addition, inappropriate shocks occurred in a similar percentage of patients to conventional ICD studies. Complication rates are low and relate largely to localised wound infections, treated successfully with antibiotics. The long term efficacy of the device is yet to be ascertained, however, a randomised trial & prospective registries are currently in progress to enable direct comparison with transvenous ICDs. This article summarises the early clinical experience and trials in the implantation of the S-ICD

    Dynamic spatial dispersion of repolarization is present in regions critical for ischemic ventricular tachycardia ablation

    Get PDF
    Background: The presence of dynamic substrate changes may facilitate functional block and reentry in ventricular tachycardia (VT). Objective: We aimed to study dynamic ventricular repolarization changes in critical regions of the VT circuit during sensed single extrastimulus pacing known as the Sense Protocol (SP). Methods: Twenty patients (aged 67 ± 9 years, 17 male) underwent VT ablation. A bipolar voltage map was obtained during sinus rhythm (SR) and right ventricular SP pacing at 20 ms above ventricular effective refractory period. Ventricular repolarization maps were constructed. Ventricular repolarization time (RT) was calculated from unipolar electrogram T waves, using the Wyatt method, as the dV/dtmax of the unipolar T wave. Entrainment or pace mapping confirmed critical sites for ablation. Results: The median global repolarization range (max-min RT per patient) was 166 ms (interquartile range [IQR] 143-181 ms) during SR mapping vs 208 ms (IQR 182-234) during SP mapping (P = .0003 vs intrinsic rhythm). Regions of late potentials (LP) had a longer RT during SP mapping compared to regions without LP (mean 394 ± 40 ms vs 342 ± 25 ms, P < .001). In paired regions of normal myocardium there was no significant spatial dispersion of repolarization (SDR)/10 mm2 during SP mapping vs SR mapping (SDR 11 ± 6 ms vs 10 ± 6 ms, P = .54). SDR/10 mm2 was greater in critical areas of the VT circuit during SP mapping 63 ± 29 ms vs SR mapping 16 ± 9 ms (P < .001). Conclusion: Ventricular repolarization is prolonged in regions of LP and increases dynamically, resulting in dynamic SDR in critical areas of the VT circuit. These dynamic substrate changes may be an important factor that facilitates VT circuits

    A randomized sham-controlled study of pulmonary vein isolation in symptomatic atrial fibrillation (The SHAM-PVI study): Study design and rationale

    Get PDF
    INTRODUCTION: Pulmonary vein (PV) isolation has been shown to reduce atrial fibrillation (AF) burden and symptoms in patients. However, to date previous studies have been unblinded raising the possibility of a placebo effect to account for differences in outcomes. HYPOTHESIS & METHODS: The objective of this study is to compare PV isolation to a sham procedure in patients with symptomatic AF. The SHAM-PVI study is a double blind randomized controlled clinical trial. 140 patients with symptomatic paroxysmal or persistent AF will be randomized to either PV isolation (with cryoballoon ablation) or a sham procedure (with phrenic nerve pacing). All patients will receive an implantable loop recorder. The primary outcome is total AF burden at 6 months postrandomisation (excluding the 3 month blanking period). Key secondary outcomes include (1) time to symptomatic and asymptomatic atrial tachyarrhythmia (2) total atrial tachyarrhythmia episodes and (3) patient reported outcome measures. RESULTS: Enrollment was initiated in January 2020. Through April 2023 119 patients have been recruited. Results are expected to be disseminated in 2024. CONCLUSION: This study compares PV isolation using cryoablation to a sham procedure. The study will estimate the effect of PV isolation on AF burden

    Assessment of a conduction-repolarisation metric to predict Arrhythmogenesis in right ventricular disorders

    Get PDF
    Background: The re-entry vulnerability index (RVI) is a recently proposed activation-repolarization metric designed to quantify tissue susceptibility to re-entry. This study aimed to test feasibility of an RVI-based algorithm to predict the earliest endocardial activation site of ventricular tachycardia (VT) during electrophysiological studies and occurrence of haemodynamically significant ventricular arrhythmias in follow-up. Methods: Patients with Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) (n = 11), Brugada Syndrome (BrS) (n = 13) and focal RV outflow tract VT (n = 9) underwent programmed stimulation with unipolar electrograms recorded from a non-contact array in the RV. Results: Lowest values of RVI co-localised with VT earliest activation site in ARVC/BrS but not in focal VT. The distance between region of lowest RVI and site of VT earliest site (D min ) was lower in ARVC/BrS than in focal VT (6.8 ± 6.7 mm vs 26.9 ± 13.3 mm, p = 0.005). ARVC/BrS patients with inducible VT had lower Global-RVI (RVI G ) than those who were non-inducible (−54.9 ± 13.0 ms vs −35.9 ± 8.6 ms, p = 0.005) or those with focal VT (−30.6 ± 11.5 ms, p = 0.001). Patients were followed up for 112 ± 19 months. Those with clinical VT events had lower Global-RVI than both ARVC and BrS patients without VT (−54.5 ± 13.5 ms vs −36.2 ± 8.8 ms, p = 0.007) and focal VT patients (−30.6 ± 11.5 ms, p = 0.002). Conclusions: RVI reliably identifies the earliest RV endocardial activation site of VT in BrS and ARVC but not focal ventricular arrhythmias and predicts the incidence of haemodynamically significant arrhythmias. Therefore, RVI may be of value in predicting VT exit sites and hence targeting of re-entrant arrhythmias

    Ventricular Stimulus Site Influences Dynamic Dispersion of Repolarization In The Intact Human Heart

    Get PDF
    The spatial variation in restitution properties in relation to varying stimulus site is poorly defined. This study aimed to investigate the effect of varying stimulus site on apico-basal and transmural activation time (AT), action potential duration (APD) and repolarization time (RT) during restitution studies in the intact human heart. Ten patients with structurally normal hearts, undergoing clinical electrophysiology studies were enrolled. Decapolar catheters were placed apex to base in the endocardial right ventricle (RVendo) and left ventricle (LVendo), and an LV branch of the coronary sinus (LVepi) for transmural recording. S1-S2 restitution protocols were performed pacing RVendo apex, LVendo base and LVepi base. Overall 725 restitution curves were analyzed, 74% of slopes had an Smax>1 (p < 0.001), mean Smax=1.76. APD was shorter in the LVepi compared to LVendo regardless of pacing site (30ms difference during RVendo pacing, 25ms during LVendo and 48ms during LVepi; 50(th) quantile, p<0.01). Basal LVepi pacing resulted in a significant transmural gradient of RT (77ms, 50(th) quantile: p<0.01), due to loss of negative transmural AT-APD coupling (mean slope 0.63±0.3). No significant transmural gradient in RT was demonstrated during endocardial RV or LV pacing, with preserved negative transmural AT-APD coupling (mean slope -1.36 ±1.9 and -0.71 ±0.4, respectively). Steep ARI restitution slopes predominate in the normal ventricle and dynamic ARI, RT gradients exist which are modulated by the site of activation. Epicardial stimulation to initiate ventricular activation promotes significant transmural gradients of repolarization that could be pro-arrhythmic

    Disease Severity and Exercise Testing Reduce Subcutaneous Implantable Cardioverter-Defibrillator Left Sternal ECG Screening Success in Hypertrophic Cardiomyopathy.

    Get PDF
    BACKGROUND: The features of the hypertrophic cardiomyopathy (HCM) ECG make it a challenge for subcutaneous implantable cardioverter-defibrillator (S-ICD) screening. We aimed to investigate the causes of screening failure at rest and on exercise to inform optimal S-ICD ECG vector development. METHODS AND RESULTS: One hundred and thirty-one HCM patients (age, 50±16 years; 92 males and 39 females) with ≄1 HCM risk factor for sudden death underwent S-ICD ECG screening at rest and on exercise. Fifty patients (38%) were ineligible for S-ICD because of screening failure in every lead vector: 33 (66%) failed in the supine position, 12 (24%) failed in the standing position, and 5 (10%) failed on exercise. In patients who could exercise and passed screening at rest, 31 (44%) had 1 vector safety, 16 (23%) had 2 vector safety, and 24 (33%) had 3 vector safety. Increased R:T wave ratio in the S-ICD screening ECG (odds ratio, 4.0; confidence interval, 3.0-5.3; P<0.001) was associated with screening failure, while R/T ratio <3 in aVF (odds ratio, 0.3; confidence interval, 0.12-0.69; P=0.006) and increasing age (odds ratio, 0.97; confidence interval, 0.95-0.99; P=0.03) was associated with reduced screening failure. European Society of Cardiology risk score was higher in those failing screening (risk score 5.5% [interquartile range, 3.2-8.7] in failed versus 4.5% [interquartile range, 2.9-7.4] in passed; P=0.04). CONCLUSIONS: HCM patients have a significant incidence of screening failure, which is determined primarily by the increased R:T ratio on the screening ECG and lead aVF. High-risk patients have an increased screening failure rate. Optimization of sensing algorithms is required to ensure that the highest risk HCM patients can benefit from S-ICD implantation

    A nurse-led implantable loop recorder service is safe and cost effective

    Get PDF
    Introduction: Implantable loop recorders (ILR) are predominantly implanted by cardiologists in the catheter laboratory. We developed a nurse‐delivered service for the implantation of LINQ (Medtronic; Minnesota) ILRs in the outpatient setting. This study compared the safety and cost‐effectiveness of the introduction of this nurse‐delivered ILR service with contemporaneous physician‐led procedures. / Methods: Consecutive patients undergoing an ILR at our institution between 1st July 2016 and 4th June 2018 were included. Data were prospectively entered into a computerized database, which was retrospectively analyzed. / Results: A total of 475 patients underwent ILR implantation, 271 (57%) of these were implanted by physicians in the catheter laboratory and 204 (43%) by nurses in the outpatient setting. Six complications occurred in physician‐implants and two in nurse‐implants (P = .3). Procedural time for physician‐implants (13.4 ± 8.0 minutes) and nurse‐implants (14.2 ± 10.1 minutes) were comparable (P = .98). The procedural cost was estimated as ÂŁ576.02 for physician‐implants against ÂŁ279.95 with nurse‐implants, equating to a 57.3% cost reduction. In our center, the total cost of ILR implantation in the catheter laboratory by physicians was ÂŁ10 513.13 p.a. vs ÂŁ6661.55 p.a. with a nurse‐delivered model. When overheads for running, cleaning, and maintaining were accounted for, we estimated a saving of ÂŁ68 685.75 was performed by moving to a nurse‐delivered model for ILR implants. Over 133 catheter laboratory and implanting physician hours were saved and utilized for other more complex procedures. / Conclusion: ILR implantation in the outpatient setting by suitably trained nurses is safe and leads to significant financial savings

    Evaluation of the Re-entry Vulnerability Index to Predict Ventricular Tachycardia Circuits Using High Density Contact Mapping

    Get PDF
    BACKGROUND: Identifying arrhythmogenic sites to improve ventricular tachycardia (VT) ablation outcomes remains unresolved. The re-entry vulnerability index (RVI) combines activation and repolarization timings to identify sites critical for re-entrant arrhythmia initiation without inducing VT. OBJECTIVE: To provide the first assessment of RVI's capability to identify VT sites of origin using high-density contact mapping and comparison with other activation-repolarization markers of functional substrate. METHODS: 18 VT ablation patients (16M, 72% ischemic) were studied. Unipolar electrograms were recorded during ventricular pacing and analysed off-line. Activation time (AT), activation-recovery interval (ARI), repolarization time (RT) were measured. Vulnerability to re-entry was mapped based on RVI and spatial distribution of AT, ARI and RT. The distance from sites identified as vulnerable to re-entry to the VT site of origin was measured, with distances 20 mm indicating accurate and inaccurate localization, respectively. RESULTS: The origin of 18 VTs was identified (n=6 entrainment, n=12 pace-mapping). RVI maps included 1012, 408-2098 (median, 1st-3rd quartiles) points/patient. RVI accurately localized 72.2% VT sites of origin, with median distance equal to 5.1, 3.2-10.1 mm. Inaccurate localization was significantly less frequent for RVI than AT (5.6% vs 33.3%, OR=0.12, P=0.035). Compared to RVI, distance to VT sites of origin was significantly larger for sites showing prolonged RT and ARI, and non-significantly larger for sites showing highest AT and ARI gradients. CONCLUSION: RVI identifies vulnerable regions closest to VT sites of origin. Activation-repolarization metrics may improve VT substrate delineation and inform novel ablation strategies

    Atrial fibrillation cryoablation is an effective day case treatment: the UK PolarX vs. Arctic Front Advance experience

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. AIMS: Pulmonary vein isolation (PVI) is the cornerstone of catheter ablation for atrial fibrillation (AF). There are limited data on the PolarX Cryoballoon. The study aimed to establish the safety, efficacy, and feasibility of same day discharge for Cryoballoon PVI. METHODS AND RESULTS: Multi-centre study across 12 centres. Procedural metrics, safety profile, and procedural efficacy of the PolarX Cryoballoon with the Arctic Front Advance (AFA) Cryoballoon were compared in a cohort large enough to provide definitive comparative data. A total of 1688 patients underwent PVI with cryoablation (50% PolarX and 50% AFA). Successful PVI was achieved with 1677 (99.3%) patients with 97.2% (n = 1641) performed as day case procedures with a complication rate of &lt;1%. Safety, procedural metrics, and efficacy of the PolarX Cryoballoon were comparable with the AFA cohort. The PolarX Cryoballoon demonstrated a nadir temperature of -54.6 \ub1 7.6\ub0C, temperature at 30 s of -38.6 \ub1 7.2\ub0C, time to -40\ub0C of 34.1 \ub1 13.7 s, and time to isolation of 49.8 \ub1 33.2 s. Independent predictors for achieving PVI included time to reach -40\ub0C [odds ratio (OR) 1.34; P &lt; 0.001] and nadir temperature (OR 1.24; P &lt; 0.001) with an optimal cut-off of ≀34 s [area under the curve (AUC) 0.73; P &lt; 0.001] and nadir temperature of ≀-54.0\ub0C (AUC 0.71; P &lt; 0.001), respectively. CONCLUSIONS: This large-scale UK multi-centre study has shown that Cryoballoon PVI is a safe, effective day case procedure. PVI using the PolarX Cryoballoon was similarly safe and effective as the AFA Cryoballoon. The cryoablation metrics achieved with the PolarX Cryoballoon were different to that reported with the AFA Cryoballoon. Modified cryoablation targets are required when utilizing the PolarX Cryoballoon

    Atrial fibrillation cryoablation is an effective day case treatment: the UK PolarX vs. Arctic Front Advance experience.

    Get PDF
    AIMS: Pulmonary vein isolation (PVI) is the cornerstone of catheter ablation for atrial fibrillation (AF). There are limited data on the PolarX Cryoballoon. The study aimed to establish the safety, efficacy, and feasibility of same day discharge for Cryoballoon PVI. METHODS AND RESULTS: Multi-centre study across 12 centres. Procedural metrics, safety profile, and procedural efficacy of the PolarX Cryoballoon with the Arctic Front Advance (AFA) Cryoballoon were compared in a cohort large enough to provide definitive comparative data. A total of 1688 patients underwent PVI with cryoablation (50% PolarX and 50% AFA). Successful PVI was achieved with 1677 (99.3%) patients with 97.2% (n = 1641) performed as day case procedures with a complication rate of <1%. Safety, procedural metrics, and efficacy of the PolarX Cryoballoon were comparable with the AFA cohort. The PolarX Cryoballoon demonstrated a nadir temperature of -54.6 ± 7.6°C, temperature at 30 s of -38.6 ± 7.2°C, time to -40°C of 34.1 ± 13.7 s, and time to isolation of 49.8 ± 33.2 s. Independent predictors for achieving PVI included time to reach -40°C [odds ratio (OR) 1.34; P < 0.001] and nadir temperature (OR 1.24; P < 0.001) with an optimal cut-off of ≀34 s [area under the curve (AUC) 0.73; P < 0.001] and nadir temperature of ≀-54.0°C (AUC 0.71; P < 0.001), respectively. CONCLUSIONS: This large-scale UK multi-centre study has shown that Cryoballoon PVI is a safe, effective day case procedure. PVI using the PolarX Cryoballoon was similarly safe and effective as the AFA Cryoballoon. The cryoablation metrics achieved with the PolarX Cryoballoon were different to that reported with the AFA Cryoballoon. Modified cryoablation targets are required when utilizing the PolarX Cryoballoon
    • 

    corecore