349 research outputs found

    Improving the performance of bright quantum dot single photon sources using amplitude modulation

    Get PDF
    Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit non-ideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of solid-state systems, which often suffer from excess dephasing and multi-photon background emission

    Neural Decision Boundaries for Maximal Information Transmission

    Get PDF
    We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information transmitted about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of responses (spikes). In a small noise limit, we derive a general equation for the decision boundary that locally relates its curvature to the probability distribution of inputs. We show that for Gaussian inputs the optimal boundaries are planar, but for non-Gaussian inputs the curvature is nonzero. As an example, we consider exponentially distributed inputs, which are known to approximate a variety of signals from natural environment.Comment: 5 pages, 3 figure

    The Stokes Phenomenon and Quantum Tunneling for de Sitter Radiation in Nonstationary Coordinates

    Full text link
    We study quantum tunneling for the de Sitter radiation in the planar coordinates and global coordinates, which are nonstationary coordinates and describe the expanding geometry. Using the phase-integral approximation for the Hamilton-Jacobi action in the complex plane of time, we obtain the particle-production rate in both coordinates and derive the additional sinusoidal factor depending on the dimensionality of spacetime and the quantum number for spherical harmonics in the global coordinates. This approach resolves the factor of two problem in the tunneling method.Comment: LaTex 10 pages, no figur

    Opportunities for improving pLDH-based malaria diagnostic tests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoclonal antibodies to <it>Plasmodium </it>lactate dehydrogenase (pLDH) have been previously used to format immunochromatographic tests for the diagnosis of malaria. Using pLDH as an antigen has several advantages as a sensitive measure of the presence of parasites within patient blood samples. However, variable results in terms of specificity and sensitivity among different commercially available diagnostic kits have been reported and it has not been clear from these studies whether the performance of an individual test is due simply to how it is engineered or whether it is due to the biochemical nature of the pLDH-antibody reaction itself.</p> <p>Methods</p> <p>A series of systematic studies to determine how various pLDH monoclonal antibodies work in combination was undertaken. Different combinations of anti-pLDH monoclonal antibodies were used in a rapid-test immunochromatographic assay format to determine parameters of sensitivity and specificity with regard to individual <it>Plasmodium </it>species.</p> <p>Results</p> <p>Dramatic differences were found in both species specificity and overall sensitivity depending on which antibody is used on the immunochromatographic strip and which is used on the colorimetric colloidal-gold used for visual detection.</p> <p>Discussion</p> <p>The results demonstrate the feasibility of different test formats for the detection and speciation of malarial infections. In addition, the data will enable the development of a universal rapid test algorithm that may potentially provide a cost-effective strategy to diagnose and manage patients in a wide range of clinical settings.</p> <p>Conclusion</p> <p>These data emphasize that using different anti-pLDH antibody combinations offers a tractable way to optimize immunochromatographic pLDH tests.</p

    Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    Full text link
    The interaction of optical and mechanical modes in nanoscale optomechanical systems has been widely studied for applications ranging from sensing to quantum information science. Here, we develop a platform for cavity optomechanical circuits in which localized and interacting 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency field through the piezo-electric effect, or optically through the strong photoelastic effect. We use this to demonstrate a novel acoustic wave interference effect, analogous to coherent population trapping in atomic systems, in which the coherent mechanical motion induced by the electrical drive can be completely cancelled out by the optically-driven motion. The ability to manipulate cavity optomechanical systems with equal facility through either photonic or phononic channels enables new device and system architectures for signal transduction between the optical, electrical, and mechanical domains

    Longitudinal In Vivo Imaging of Retinal Ganglion Cells and Retinal Thickness Changes Following Optic Nerve Injury in Mice

    Get PDF
    Retinal ganglion cells (RGCs) die in sight-threatening eye diseases. Imaging RGCs in humans is not currently possible and proof of principle in experimental models is fundamental for future development. Our objective was to quantify RGC density and retinal thickness following optic nerve transection in transgenic mice expressing cyan fluorescent protein (CFP) under control of the Thy1 promoter, expressed by RGCs and other neurons.A modified confocal scanning laser ophthalmoscopy (CSLO)/spectral-domain optical coherence tomography (SD-OCT) camera was used to image and quantify CFP+ cells in mice from the B6.Cg-Tg(Thy1-CFP)23Jrs/J line. SD-OCT circle (1 B-scan), raster (37 B-scans) and radial (24 B-scans) scans of the retina were also obtained. CSLO was performed at baseline (n = 11) and 3 (n = 11), 5 (n = 4), 7 (n = 10), 10 (n = 6), 14 (n = 7) and 21 (n = 5) days post-transection, while SD-OCT was performed at baseline and 7, 14 and 35 days (n = 9) post-transection. Longitudinal change in CFP+ cell density and retinal thickness were computed. Compared to baseline, the mean (SD) percentage CFP+ cells remaining at 3, 5, 7, 10, 14 and 21 days post-transection was 86 (9)%, 63 (11)%, 45 (11)%, 31 (9)%, 20 (9)% and 8 (4)%, respectively. Compared to baseline, the mean (SD) retinal thickness at 7 days post-transection was 97 (3)%, 98 (2)% and 97 (4)% for the circle, raster and radial scans, respectively. The corresponding figures at 14 and 35 days post-transection were 96 (3)%, 97 (2)% and 95 (3)%; and 93 (3)%, 94 (3)% and 92 (3)%.Longitudinal imaging showed an exponential decline in CFP+ cell density and a small (≤8%) reduction in SD-OCT measured retinal thickness post-transection. SD-OCT is a promising tool for detecting structural changes in experimental optic neuropathy. These results represent an important step towards translation for clinical use

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE

    Back reaction, emission spectrum and entropy spectroscopy

    Full text link
    Recently, an interesting work, which reformulates the tunneling framework to directly produce the Hawking emission spectrum and entropy spectroscopy in the tunneling picture, has been received a broad attention. However, during the emission process, most related observations have not incorporated the effects of back reaction on the background spacetime, whose derivations are therefore not the desiring results for the real physical process. With this point as a central motivation, in this paper we suitably adapt the \emph{reformulated} tunneling framework so that it can well accommodate the effects of back reaction to produce the Hawking emission spectrum and entropy spectroscopy. Consequently, we interestingly find that, when back reaction is considered, the Parikh-Wilczek's outstanding observations that, an isolated radiating black hole has an unitary-evolving emission spectrum that is \emph{not} precisely thermal, but is related to the change of the Bekenstein-Hawking entropy, can also be reproduced in the reformulated tunneling framework, meanwhile the entropy spectrum has the same form as that without inclusion of back reaction, which demonstrates the entropy quantum is \emph{independent} of the effects of back reaction. As our final analysis, we concentrate on the issues of the black hole information, but \emph{unfortunately} find that, even including the effects of back reaction and higher-order quantum corrections, such tunneling formalism can still not provide a mechanism for preserving the black hole information.Comment: 16 pages, no figure, use JHEP3.cls. to be published in JHE

    Renal Cell Carcinoma with Unusual Metastasis to the Small Intestine Manifesting as Extensive Polyposis: Successful Management with Intraoperative Therapeutic Endoscopy

    Get PDF
    We present here a rare clinical case of a 53-year-old gentleman with metastasis from renal cell carcinoma (RCC) to the small intestine presenting with extensive polyposis and massive gastrointestinal bleeding which was successfully managed with intraoperative endoscopic polypectomy and segmental small bowel resection. The patient presented with melena 2 weeks after right nephrectomy for RCC. Capsule endoscopy found extensive polyposis throughout the small bowel, and the histological features confirmed the diagnosis of metastatic RCC. The patient eventually underwent laparotomy with intraoperative endoscopy of the entire small bowel. Most of the polyps were removed by snare polypectomy. Three segments of the small bowel with extensive transmural involvement had to be resected with primary anastomosis. In the 2 months following his surgery, the patient had no further evidence of gastrointestinal bleeding. The decision of meticulously removing close to 100 polyps by intraoperative endoscopy prevented the patient from requiring total small bowel resection and lifelong dependence on parenteral nutrition. In conclusion, gastrointestinal bleeding in a patient with known RCC should always trigger full gastrointestinal work-up including capsule endoscopy and, if necessary, double balloon enteroscopy

    A study of Smad4, Smad6 and Smad7 in Surgically Resected Samples of Pancreatic Ductal Adenocarcinoma and Their Correlation with Clinicopathological Parameters and Patient Survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smad4 is the common mediator of the tumor suppressive functions of TGF-beta. Smad6 and Smad7 are the antagonists of the TGF-beta pathway. This study investigates the differential protein expressions of Smad4, Smad6 and Smad7 in tumor as compared to normal tissue of pancreatic ductal adenocarcinoma (PDAC) and compares them with clinicopathological parameters and patient survival.</p> <p>Results</p> <p>There was a significant difference in protein expressions of Smad4 (p = 0.0001), Smad6 (p = 0.0015) and Smad7 (p = 0.0005) protein in tumor as compared to paired normal samples. Loss of Smad7 expression correlated significantly with tumor size (r = 0.421, p < 0.036) and margin status (r = 0.431; p < .032). Patients with moderate to high Smad4 protein expression had a better survival (median survival = 14.600 ± 2.112 months) than patients with absent or weak Smad4 protein expression (median survival = 7.150 ± 0.662). In addition, advanced disease stage correlated significantly with poor prognosis.</p> <p>Conclusion</p> <p>Loss of Smad4 significantly correlated with poor survival of PDAC patients. In the cases where Smad4 is expressed, Smad6 inhibition is possibly a novel mechanism for Smad4 inactivation. Smad7 has a role in pathobiology of PDAC. Further investigation in the roles of Smad6 and Smad7 would help in the identification of novel therapeutic targets for PDAC.</p
    • …
    corecore