12 research outputs found

    Exposure to Secondhand Smoke and Arrhythmogenic Cardiac Alternans in a Mouse Model.

    Get PDF
    BackgroundEpidemiological evidence suggests that a majority of deaths attributed to secondhand smoke (SHS) exposure are cardiovascular related. However, to our knowledge, the impact of SHS on cardiac electrophysiology, [Formula: see text] handling, and arrhythmia risk has not been studied.ObjectivesThe purpose of this study was to investigate the impact of an environmentally relevant concentration of SHS on cardiac electrophysiology and indicators of arrhythmia.MethodsMale C57BL/6 mice were exposed to SHS [total suspended particles (THS): [Formula: see text], nicotine: [Formula: see text], carbon monoxide: [Formula: see text], or filtered air (FA) for 4, 8, or 12 wk ([Formula: see text]]. Hearts were excised and Langendorff perfused for dual optical mapping with voltage- and [Formula: see text]-sensitive dyes.ResultsAt slow pacing rates, SHS exposure did not alter baseline electrophysiological parameters. With increasing pacing frequency, action potential duration (APD), and intracellular [Formula: see text] alternans magnitude progressively increased in all groups. At 4 and 8 wk, there were no statistical differences in APD or [Formula: see text] alternans magnitude between SHS and FA groups. At 12 wk, both APD and [Formula: see text] alternans magnitude were significantly increased in the SHS compared to FA group ([Formula: see text]). SHS exposure did not impact the time constant of [Formula: see text] transient decay ([Formula: see text]) at any exposure time point. At 12 wk exposure, the recovery of [Formula: see text] transient amplitude with premature stimuli was slightly (but nonsignificantly) delayed in SHS compared to FA hearts, suggesting that [Formula: see text] release via ryanodine receptors may be impaired.ConclusionsIn male mice, chronic exposure to SHS at levels relevant to social situations in humans increased their susceptibility to cardiac alternans, a known precursor to ventricular arrhythmia. https://doi.org/10.1289/EHP3664

    Different paths, same destination: divergent action potential responses produce conserved cardiac fight-or-flight response in mouse and rabbit hearts

    Get PDF
    Sympathetic activation of the heart results in positive chronotropy and inotropy, which together rapidly increase cardiac output. The precise mechanisms that produce the electrophysiological and Ca2+ handling changes underlying chronotropic and inotropic responses have been studied in detail in isolated cardiac myocytes. However, few studies have examined the dynamic effects of physiological sympathetic nerve activation on cardiac action potentials (APs) and intracellular Ca2+ transients (CaTs) in the intact heart. Here, we performed bilateral sympathetic nerve stimulation (SNS) in fully innervated, Langendorff‐perfused rabbit and mouse hearts. Dual optical mapping with voltage‐ and Ca2+‐sensitive dyes allowed for analysis of spatio‐temporal AP and CaT dynamics. The rabbit heart responded to SNS with a monotonic increase in heart rate (HR), monotonic decreases in AP and CaT duration (APD, CaTD), and a monotonic increase in CaT amplitude. The mouse heart had similar HR and CaT responses; however, a pronounced biphasic APD response occurred, with initial prolongation (50.9 ± 5.1 ms at t = 0 s vs. 60.6 ± 4.1 ms at t = 15 s, P < 0.05) followed by shortening (46.5 ± 9.1 ms at t = 60 s, P = NS vs. t = 0). We determined the biphasic APD response in mouse was partly due to dynamic changes in HR during SNS and was exacerbated by β‐adrenergic activation. Simulations with species‐specific cardiac models revealed that transient APD prolongation in mouse allowed for greater and more rapid CaT responses, suggesting more rapid increases in contractility; conversely, the rabbit heart requires APD shortening to produce optimal inotropic responses. Thus, while the cardiac fight‐or‐flight response is highly conserved between species, the underlying mechanisms orchestrating these effects differ significantly

    Optogenetic Release of Norepinephrine from Cardiac Sympathetic Neurons Alters Mechanical and Electrical Function

    No full text
    © 2014 The Author. Aims Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function. Methods and results The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation. Conclusion This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors

    Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function

    No full text
    © 2014 The Author. Aims Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function. Methods and results The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation. Conclusion This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors

    Aging Disrupts Normal Time-of-Day Variation in Cardiac Electrophysiology

    No full text
    BackgroundCardiac gene expression and arrhythmia occurrence have time-of-day variation; however, daily changes in cardiac electrophysiology, arrhythmia susceptibility, and Ca2+ handling have not been characterized. Furthermore, how these patterns change with age is unknown.MethodsHearts were isolated during the light (zeitgeber time [ZT] 4 and ZT9) and dark cycle (ZT14 and ZT21) from adult (12-18 weeks) male mice. Hearts from aged (18-20 months) male mice were isolated at ZT4 and ZT14. All hearts were Langendorff-perfused for optical mapping with voltage- and Ca2+-sensitive dyes (n=4-7/group). Cardiac gene and protein expression were assessed with real-time polymerase chain reaction (n=4-6/group) and Western blot (n=3-4/group).ResultsAdult hearts had the shortest action potential duration (APD) and Ca2+ transient duration (CaTD) at ZT14 (APD80: ZT4: 45.4±4.1 ms; ZT9: 45.1±8.6 ms; ZT14: 34.7±4.2 ms; ZT21: 49.2±7.6 ms, P<0.05 versus ZT4 and ZT21; and CaTD80: ZT4: 70.1±3.3 ms; ZT9: 72.7±2.7 ms; ZT14: 64.3±3.3 ms; ZT21: 74.4±1.2 ms, P<0.05 versus other time points). The pacing frequency at which CaT alternans emerged was faster, and average CaT alternans magnitude was significantly reduced at ZT14 compared with the other time points. There was a trend for decreased spontaneous premature ventricular complexes and pacing-induced ventricular arrhythmias at ZT14, and the hearts at ZT14 had diminished responses to isoproterenol compared with ZT4 (ZT4: 49.5.0±5.6% versus ZT14: 22.7±9.5% decrease in APD, P<0.01). In contrast, aged hearts exhibited no difference between ZT14 and ZT4 in nearly every parameter assessed (except APD80: ZT4: 39.7±1.9 ms versus ZT14: 33.8±3.1 ms, P<0.01). Gene expression of KCNA5 (potassium voltage-gated channel subfamily A member 5; encoding Kv1.5) was increased, whereas gene expression of ADRB1 (encoding β1-adrenergic receptors) was decreased at ZT14 versus ZT4 in adult hearts. No time-of-day changes in expression or phosphorylation of Ca2+ handling proteins (SERCA2 [sarco/endoplasmic reticulum Ca2+-ATPase], RyR2 [ryanodine receptor 2], and PLB [phospholamban]) was found in ex vivo perfused adult isolated hearts.ConclusionsIsolated adult hearts have strong time-of-day variation in cardiac electrophysiology, Ca2+ handling, and adrenergic responsiveness, which is disrupted with age
    corecore