4 research outputs found

    Assessment of Models to Estimate Bus-Stop Level Transit Ridership using Spatial Modeling Methods

    Get PDF
    The objective of this research is to develop and assess bus transit ridership models at a bus-stop level using two spatial modeling methods: spatial proximity method (SPM) and spatial weight method (SWM). Data for the Charlotte (North Carolina) area are used to illustrate 1) the working of the methods and 2) development and assessment of the models. Features available in Geographic Information System (GIS) software were explored to capture spatial attributes such as demographic, socioeconomic, and land use characteristics around each selected bus stop. These, along with on-network characteristics surrounding the bus stop, were used as explanatory variables. Models were then developed, using the generalized estimating equations (GEE) framework, to estimate riders boarding (dependent variable) at the bus stop as a function of selected explanatory variables that are not correlated to each other. Results obtained indicate that Negative Binomial with log-link distribution better fits the data to estimate ridership at the bus-stop level (for both SPM and SWM) than when compared to linear, Poisson with log-link and Gamma with log-link distributions. Although SPM models demonstrated distance decay behavior, statistical parameters indicate that SWM (based on functions 1/D, 1/D2, and 1/D3) does not yield better or more meaningful estimates than when compared to SPM using 0.25- mile buffer width data

    Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors

    Get PDF
    Dynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points. These are reactive oxygen species (ROS), cytosolic free Ca2+ and ion channels. Once formed, the ROS and free Ca2+ of guard cells regulate both downstream and upstream events. A major influence of ROS is to increase the levels of NO and cytosolic free Ca2+ in guard cells. Although the rise in NO is an important event during stomatal closure, the available evidences do not support the description of NO as the point of convergence. The rise in ROS and NO would cause an increase of free Ca2+ and modulate ion channels, through a network of events, in such a way that the guard cells lose K+/Cl-/anions. The efflux of these ions decreases the turgor of guard cells and leads to stomatal closure. Thus, ROS, NO and cytosolic free Ca2+ act as points of divergence. The other guard cell components, which are modulated during stomatal closure are G-proteins, cytosolic pH, phospholipids and sphingolipids. However, the current information on the role of these components is not convincing so as to assign them as the points of convergence or divergence. The interrelationships and interactions of ROS, NO, cytosolic pH, and free Ca2+ are quite complex and need further detailed examination. Our review is an attempt to critically assess the current status of information on guard cells, while emphasizing the convergence and divergence of signaling components during stomatal closure. The existing gaps in our knowledge are identified to stimulate further research

    Stomatal Closure and Rise in ROS/NO of Arabidopsis Guard Cells by Tobacco Microbial Elicitors: Cryptogein and Harpin

    No full text
    Plants use stomatal closure mediated by elicitors as the first step of the innate immune response to restrict the microbial entry. We present a comprehensive study of the effect of cryptogein and harpin, two elicitors from microbial pathogens of tobacco, on stomatal closure and guard cell signaling components in Arabidopsis thaliana, a model plant. Cryptogein as well as harpin induced stomatal closure, while elevating the levels of reactive oxygen species (ROS) and nitric oxide (NO) in the guard cells of A. thaliana. Kinetic studies with fluorescent dyes revealed that the rise in ROS levels preceded that of NO in guard cells, when treated with these two elicitors. The restriction of NO levels in guard cells, even by ROS modulators indicates the essentiality of ROS for NO production during elicitor-triggered stomatal closure. The signaling events during elicitor-induced stomatal closure appear to converge at NADPH oxidase and ROS production. Our results provide the first report on stomatal closure associated with rise in ROS/NO of guard cells by cryptogein and harpin in A. thaliana. Our results establish that A. thaliana can be used to study stomatal responses to the typical elicitors from microbial pathogens of other plants. The suitability of Arabidopsis opens up an excellent scope for further studies on signaling events leading to stomatal closure by microbial elicitors
    corecore