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Abstract

The objective of this research is to develop and assess bus transit ridership models 
at a bus-stop level using two spatial modeling methods: spatial proximity method 
(SPM) and spatial weight method (SWM). Data for the Charlotte (North Carolina) 
area are used to illustrate 1) the working of the methods and 2) development and 
assessment of the models. Features available in Geographic Information System (GIS) 
software were explored to capture spatial attributes such as demographic, socio-
economic, and land use characteristics around each selected bus stop. These, along 
with on-network characteristics surrounding the bus stop, were used as explanatory 
variables. Models were then developed, using the generalized estimating equations 
(GEE) framework, to estimate riders boarding (dependent variable) at the bus stop 
as a function of selected explanatory variables that are not correlated to each other. 
Results obtained indicate that Negative Binomial with log-link distribution better 
fits the data to estimate ridership at the bus-stop level (for both SPM and SWM) 
than when compared to linear, Poisson with log-link and Gamma with log-link dis-
tributions. Although SPM models demonstrated distance decay behavior, statistical 
parameters indicate that SWM (based on functions 1/D, 1/D2, and 1/D3) does not 
yield better or more meaningful estimates than when compared to SPM using 0.25-
mile buffer width data.
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Introduction
Transit systems support a broad range of goals that include air quality improve-
ment, energy conservation, congestion reduction, provision of mobility to the 
disadvantaged, access to employment or attraction centers, the promotion of 
economic development, sustainability, and enhanced livability. Understanding the 
factors that influence transit ridership is very important to achieve these goals and 
increase transit market potential. The Bureau of Transportation Statistics (2010) 
reports that 6,922,000 people (~5% of the nation’s overall trips) used public trans-
portation as their principal means of transportation to work each day during 2009.

Transit system managers and planners often rely on statistical models that are cost 
effective, developed in a reasonable amount of time using available data invento-
ries, and provide a good understanding of the relationship between the dependent 
variable and explanatory variables. This research aims to develop statistical models 
to estimate riders boarding at a bus stop using spatial data and on-network char-
acteristics around/near the bus stop. The data required to develop these models 
are typically available with most state Departments of Transportation and local 
agencies as well as in many open source data inventories. 

The use of bus transit depends on accessibility to a bus stop. Accessibility could be 
defined in terms of walking time (say, 5, 10, 15, or 20 minutes from an origin to a 
bus stop) or walking distance (say, 0.25, 0.5, 0.75, or 1 mile from an origin to a bus 
stop). To better comprehend the substantial effect and area of influence of spatial 
attributes (includes explanatory variables such as demographic, socio-economic, 
land use, and on-network characteristics) on ridership (dependent variable), a spa-
tial analysis needs to be conducted at several different buffer widths (say, 0.25, 0.5, 
0.75, and 1 mile) to identify the ideal spatial proximity distance to extract data for 
modeling. The maximum buffer width for consideration depends on the accept-
able maximum walking distance to access a bus stop (generally, 1 mile).

In general, the number of riders who use bus transit system decreases as the dis-
tance from the bus stop increases. Integrating data pertaining to demographic, 
socio-economic, and land use characteristics from different buffer bandwidths (say, 
0–0.25, 0.25–0.5, 0.5–0.75, and 0.75–1 mile) based on this distance decay effect, 
and using it to develop ridership models may yield better and accurate estimates.

The objective of this research is 1) to identify explanatory variables and distribu-
tion functions and 2) to develop and assess ridership models at a bus-stop using 
two spatial modeling methods: spatial proximity method (SPM) and spatial weight 
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method (SWM). In this research, the number of riders boarding a bus transit system 
at a bus stop is considered as bus-stop ridership. Data for Charlotte (North Caro-
lina) are used to illustrate 1) the working of the methods and 2) development and 
assessment of the models.

Literature Review  
As congestion in urban areas continues to worsen and highway solutions become 
less effective, many local governments and communities are turning their atten-
tion to public transit. With the increasing pressure on transportation agencies to 
find ways to alleviate congestion and compete for limited federal funds to build 
premium transit systems that offer higher levels of service and a greater impact on 
ridership, there is an urgency to improve transit ridership analysis tools and models 
(Zhao et al. 2005).

Dajani and Sullivan (1976) conducted a study to develop a causal model for esti-
mating public transit ridership using 1970 census data. Median income, percent 
central city workers, density, level of transit service, percent of African-American 
population, percent above age 65, and auto ownership were observed to be critical 
variables to estimate transit ridership. Nickesen et al. (1983) researched to develop 
a simple transit ridership estimation model for short-range transit planning. To 
ensure that the model can be applied easily and to produce accurate patronage 
estimates, the authors chose five component models (trip generation, trip distribu-
tion, modal split, linear programming, and pivot point analysis) and applied them 
in a sequence.

Peng and Dueker (1995) studied relationships between inter-routes and the extent 
to which routes were independent, complementary, or competitive using spatial 
data integration of Portland (Oregon) data. The analyzed relationships were then 
used for route-level ridership modeling and to predict the ridership impacts of ser-
vice changes, not only on the routes with service change but also on other related 
routes.

Kikuchi and Miljkovic (2001) developed transit ridership estimation models at a 
bus stop considering attributes pertaining to the bus stop (such as accessibility to 
the bus stop, demographic condition around the bus stop, conditions of the bus 
stop, and the transit service quality provided at the bus stop). T-BEST, a transit 
ridership estimation model, was developed by the Florida Department of Trans-
portation (FDOT 2004; FDOT 2005) to estimate ridership by route, direction, and 
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time-of-day based on frequency, bus stop buffer characteristics, accessibility char-
acteristics, and the effects of alternative routes and network design configurations.

Chu (2004) generated a transit ridership model at the bus stop for an average 
weekday boarding. Transit level-of-service (TLOS) based on transit availability and 
mobility and demographic characteristics, pedestrian environment, interactions 
with other modes, and competition from other bus stops were considered and 
found to play a significant role in predicting the ridership. Kimpel et al. (2007) 
examined the effects of overlapping walking service areas of bus stops on the 
demand for bus transit during the morning peak hour. Accessibility for each parcel 
to each bus stop was measured compared to other accessible bus stops in a GIS 
environment.

Sketch-level ridership forecast models for light or commuter rail (Lane et al. 2006) 
and heavy rail (Lane et al. 2009) for smaller- and medium-size cities were also 
developed in the past. The model developed was inexpensive compared to the 
traditional four-step modeling approach, since the data required to develop these 
models are readily available or can be easily obtained from Metropolitan Planning 
Organizations (MPOs) and/or the U.S. Census Bureau.

Transit ridership models were developed using a geographically weighted regres-
sion (GWR) method exploring the spatial variability in the strength of the relation-
ship between transit use and explanatory variables that included demographics, 
socio-economic, land use, transit supply and quality, and pedestrian environment 
characteristics (Chow et al. 2006; Chow et al. 2010). The coefficients in a GWR 
model are local and vary from one location to another location (unlike in ordinary 
least square regression models where coefficients interpret a global relationship 
between a dependent variable and explanatory variables). A comparison between 
the sub-regional GWR model (Chow et al. 2010) and the original regional GWR 
model (Chow et al. 2006) showed that the sub-regional GWR model performed 
better than the original regional GWR model in terms of model accuracy. 

Cervero et al. (2010) recently developed a Direct Ridership Model (DRM) for Bus 
Rapid Transit (BRT) patronage in Southern California. The DRM was developed as 
a function of three key sets of variables related to bus stops or stations and their 
surroundings. The authors developed two linear regression models—ordinary least 
square (OLS) and hierarchical linear model (HLM). OLS was found to better fit the 
data than HLM. Results obtained from the study showed a strong influence of ser-
vice frequency on BRT patronage in Los Angeles County. 
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Stover and Bae (2011) studied the impact of gasoline prices on transit ridership 
in Washington State by measuring the price elasticity of demand with respect 
to gasoline price. The results obtained indicate that transit ridership increased as 
gasoline prices increased during the study period.

Tang and Thakuriah (2011) examined if psychological effects of real-time transit 
information on commuters will lead to transit ridership gain. Findings from the 
study showed that the provision of real-time transit information might serve as an 
intervention to break current transit non-user travel habits and indeed increase the 
mode share of transit use. The study even suggested that real-time transit informa-
tion would be more useful if it is combined with facilitating programs that enhance 
commuter opportunities to be exposed to such systems first.

Limitations of Past Research
A review of past literature gives an understanding of the research methodologies 
that were adopted to estimate bus transit ridership at different levels (stop, route, 
city, and county). However, not much was documented based on spatial modeling, 
in particular, buffer or proximity analysis and spatially varying relationships. The 
effect of all the three characteristics (demographic and socio-economic, land use, 
and on-network) on bus transit ridership and the effect of correlation that could 
exist between these variables were not investigated widely in the past. Further, 
most of the transit ridership models developed in the past considered a linear rela-
tionship between ridership and explanatory variables. While OLS, HLM or GWR-
based OLS seem to be promising, non-linear or count models (such as generalized 
linear models) may be more appropriate for modeling in this case, as bus transit 
ridership are counts. This research attempts to address these above-mentioned 
limitations of past research (bus-stop non-linear ridership models exploring spa-
tially varying relationships).

Methodology
A GIS-based methodology was adopted to extract spatial data and develop bus-
stop ridership models using SPM and SWM. The methodology comprises the fol-
lowing steps:

1. Identification of data elements for model development.
2. Spatial analysis, data processing and spatial modeling methods.
3. Statistical analysis and model development.
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Identification of Data Elements for Model Development
Typical spatial data used to develop ridership models include demographic, socio-
economic, land use, and on-network characteristics. Ridership depends on demo-
graphic information such as population (by gender, ethnicity, and age), household 
size, and socio-economic characteristics such as income, employment, and auto 
ownership within walkable distance from a bus stop. Such data are available at the 
census block level. Similarly, land use characteristics such as residential, industrial, 
commercial, and institutional areas within walkable distance from a bus stop also 
have significant bearing on transit ridership. The proportion of increase or decrease 
in ridership could vary geographically (downtown/uptown versus urban versus 
suburban areas) for the same type of land use by the time of the day. 

Transit routes generally are provided along major (high speed, high traffic volume) 
roads. Characteristics such as presence of a median, speed limit, one-way or two-
way street, number of lanes, and road classification may have an effect on transit 
ridership. These characteristics could be identified using aerial photographs or 
conducting field visits or are available in regional transportation databases.

Table 1 summarizes demographic and socio-economic characteristics at the census 
block level, land use characteristics, and on-network characteristics that were used 
considered for analysis and model development in this research.

Table 1. Explanatory Variables Considered for Modeling

Demographic and Socio-Economic Land Use (in thousand sf)

Population (by gender, ethnicity and age) 0.25 acre residential/apartments
Households, mean household income 0.25 – 0.5 acre residential
Auto-ownership (0, 1, … vehicle/household) 0.5 – 2 acre residential
Total employment > 2 acre residential
On-Network Institutional
Speed limit (mph)/functional class Light commercial
Presence of median Heavy commercial
One-way or two-way street Light industrial
# lanes Heavy industrial

Spatial Analysis, Data Processing and Spatial Modeling Methods
Buffers (0.25, 0.5, 0.75, and 1 mile) were generated around each selected bus stop 
in the study area. Layers pertaining to census data and land use data were then 
overlaid on the generated buffers. The data were intersected using the “intersect” 
feature and then processed in a GIS environment. A database with demographic, 
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socio-economic, and land use information in the vicinity of each bus stop, for each 
buffer width, was then generated. The spatial overlay and data processing approach 
is similar to the one used by Pulugurtha and Repaka (2009, 2011) to develop pedes-
trian activity models for signalized intersections. On-network characteristics from 
aerial photographs, field visits, and the regional transportation network database 
were then added to these databases for each buffer width.

In this research, the working of two spatial modeling methods (SPM and SWM) to 
estimate ridership at the bus stop was evaluated.

Spatial Proximity Method (SPM) 
The first method, SPM, was used to evaluate the best proximity distance that has 
a strong influence on estimating ridership at a bus stop. Databases, as stated pre-
viously, were generated to develop models to estimate bus-stop transit ridership 
for each buffer width (0.25, 0.5, 0.75, and 1 mile) discretely in this case. The model 
with buffer width data that has better goodness of fit statistics was selected as the 
best model. This buffer width was considered as the best ridership influence area 
(proximity distance) to estimate ridership for a bus stop.

Spatial Weight Method (SWM)
The second method, SWM, is a spatial modeling method that accounts for spa-
tially-varying relationships. A weight pattern/procedure based on three spatially-
decreasing functions (1/D, 1/D2, and 1/D3) were considered to evaluate and identify 
the function or weight combination that better estimates ridership at a bus stop. 
The data sets for 0.25-, 0.5-, 0.75-, and 1-mile buffer widths were used to create 
data for buffer bandwidths (0–0.25, 0.25–0.5, 0.5–0.75, and 0.75–1 mile). These 
bandwidths were given weights such that the total summation of weight is equal 
to 1. The calculation of weights for functions 1/D, 1/D2, and 1/D3 are mathematically 
shown in Equations 1 to 3. 

where, D is the buffer width (0.25, 0.5, 0.75, or 1-mile).

Table 2 summarizes bandwidth weights for the three different functions consid-
ered in this research.
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Table 2. Bandwidth Weights for Different Functions

Bandwidth
Function

1/D 1/D2 1/D3

0 – 0.25 48 70 85

0.25 – 0.50 24 18 11

0.50 – 0.75 16 8 3

0.75 – 1.00 12 4 1

Spatial data (excluding on-network characteristics) were integrated using these 
weights to develop databases for different functions. Equation 4 illustrates the 
integration of spatial data using different weights for a given function.

where, V is integrated spatial data for a variable; V0-0.25, V0.25-0.5, V0.5-0.75, and V0.75-1 
represent spatial data for the same variable, and W0-0.25, W0.25-0.5, W0.5-0.75, and W0.75-1 
represent spatial weights for buffer bandwidths 0-0.25, 0.25-0.5, 0.5-0.75 and 0.75-1, 
respectively.

Databases for three different weight functions were developed to determine the 
best-fit SWM. The weight function with best goodness of fit statistics was consid-
ered as the spatial varying pattern to better estimate ridership. 

Statistical Analysis and Model Development
Multicollinearity occurs when two or more explanatory variables in the model are 
correlated and provide redundant information about the response variable. High 
multicollinearity leads to increased standard error of estimates of the coefficients 
and mislead results. To minimize the effect of multicollinearity, a Pearson correla-
tion matrix was generated using SPSS© software (SPSS 2008) to identify the cor-
relation between the explanatory variables. 

In general, variables with a Pearson correlation coefficient greater than 0.3 or less 
than -0.3 are considered correlated to each other. The generated Pearson correla-
tion matrix was examined to omit one of the two variables that are correlated to 
each other. 

Generalized Estimating Equations (GEE), an extension of the generalized linear 
models (GLM), was then used to develop bus-stop ridership models in SPSS©. In 
this research, four GEE (linear, Poisson with log-link, Gamma with log-link, and 
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Negative Binomial with log-link) models were developed to evaluate the best 
distribution to estimate ridership at the bus stop. While linear distribution helps 
examine the presence of a strong linear relation between dependent and indepen-
dent variables, the log-link (Gamma, Poisson, and Negative Binomial) distributions 
help examine the presence of a strong non-linear relation between dependent and 
independent variables.

In each case, a preliminary model was developed using an initial set of explanatory 
variables that are not correlated to other variables. Significance value was used to 
examine the strength of each variable. Those with significance value greater than 
0.05 (at 95% confidence level) were eliminated one after another. The models were 
re-run in SPSS© environment until all the variables in the model had a significance 
value ≤ 0.05. The model when all variables had significance value ≤ 0.05 was con-
sidered as the final model for the scenario and was used for assessment.

Quasi-likelihood criterion (QIC) and corrected quasi-likelihood under the indepen-
dence model criterion (QICC) were used as statistics to assess the goodness of fit. In 
general, QIC and QICC should be low for a best fit model. The difference between 
QIC and QICC has to be reasonably low as well.

Results
Data for Charlotte (North Carolina) were gathered and used to illustrate the 
working of methods and development and assessment of models. The bus transit 
system in the region is operated and maintained by Charlotte Area Transit System 
(CATS). It serves over 70 routes (with 3,600+ bus stops), of which 56 are local routes 
and 19 are express routes. The average daily ridership during 2010 was more than 
66,000 passengers.

Census estimates with demographic and socio-economic characteristics were 
obtained from the U.S. Census Bureau website. Land-use data and on-network 
characteristics were obtained from the City of Charlotte Department of Transpor-
tation (CDOT). Bus-stop ridership (boarding only) data were obtained from CATS. 
All data considered in this research are for 2008.

The bus-stop level ridership data from CATS showed that the number of passen-
gers boarding bus transit system was collected for at least one day at over 2,900 
bus-stops during 2008. These data were processed to compute average daily rider-
ship for each of these bus stops.
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Of the bus stops for which ridership data were available, 2,857 bus stops were 
selected to develop ridership models. The average daily ridership for the selected 
bus stops is ~23. Of the 2,857 selected bus stops, 488 bus stops were observed to 
have ridership number greater than the average value.

As explained previously, explanatory variables that are not correlated to other variables 
were selected to minimize redundant explanatory variables and standard errors in the 
models. This was done separately for databases of each individual buffer width (0.25, 
0.5, 0.75, and 1 mile) as well as the integrated databases for different weight functions. 

Selection of Distribution Function that Better Fits the Data
Models based on different probability distributions were developed, as it is critical 
to understand the probability distribution that better fits the ridership data. Four 
GEE models based on different probability distributions (linear, Poisson with log-
link, Gamma with log-link, and Negative Binomial with log-link) were developed 
using data for each buffer width (0.25, 0.5, 075, and 1 mile). Overall, 16 models 
were developed based on SPM to evaluate and select the best proximity distance 
to capture spatial data.

As an example, Table 3 summarizes results obtained for models based on the four 
probability distributions using 0.25-mile buffer width data. The information pre-
sented in the table can be used to estimate ridership at a bus stop. While substitut-
ing data (selected land-use areas, the number of households with no vehicles, mean 
household income, and speed limit along the corridor) gives a ridership estimate 
directly in the case of a model based on linear probability distribution, it gives a 
natural logarithm of ridership in the case of the other three log-link probability dis-
tributions. QIC and QICC were compared to identify the distribution that best fits 
the data for each buffer width. Results obtained show that Negative Binomial with 
log-link with lowest QIC and QICC (difference between QIC and QICC reasonably 
low) best fits the data for each selected buffer width. 

Selection of Ideal Proximity Distance to Extract Spatial Data
Table 4 summarizes parameters of four (Negative Binomial with log-link) models 
developed using data for different buffer widths (0.25, 0.5, 0.75, and 1 mile). The 
model developed using the 0.25 buffer width data has the lowest QIC and QICC 
(difference between QIC and QICC reasonably low) when compared to models 
developed using data for other buffer widths (0.5, 0.75, and 1,mile). For the data 
used in this research, this is the best SPM, and 0.25-mile is the best proximity dis-
tance that estimates the average daily ridership at the bus-stop. 
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The strength of explanatory variables, in general, decreased while goodness-of-fit 
statistics increased as the distance from the bus stop increased. In other words, 
results from SPM for different buffer widths tend to show distance decay behavior. 
This probably indicates that better and more accurate estimates may be obtained 
by developing models using data integrated from different buffer widths.

Selection of Best Function to Integrate Data and Develop Model Using SW
Data from different buffer widths were integrated using different weight functions. 
Pearson correlation matrix for each weight function was generated to check multi-
collinearity between explanatory variables. The explanatory variables that are not 
correlated to other variables were selected based on computed Pearson correlation 
coefficients. These variables were then used to develop SWM models for different 
weight functions. Even in this case, models developed using different distribution 
indicated that Negative Binomial with log-link best fits the data considered in this 
research. Table 5 summarizes results obtained using integrated data and Negative 
Binomial with log-link as a probability distribution for different weight functions.

Table 5. Selection of Best Model Based on Different Weight Functions

From Table 5, Negative Binomial with log-link model based on 1/D2 (70, 18, 8, and 
4 as relative weight for 0-0.25, 0.25-0.5, 0.5-0.75, and 0.75-1 mile buffer bandwidths, 
respectively) has the lowest QIC and QICC values (difference between QIC and 
QICC reasonably low), and is the best fit SWM model for the considered data. In 
other words, weight function 1/D2 better explains the spatially-varying relationship 
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between ridership and independent variables than the other two weight functions 
considered in this research.

Comparison of Results from SPM and SWM
A comparison of results for the model based on integrated data using weight func-
tion 1/D2 with those for SPM using 0.25-mile buffer width data (shown in Table 6) 
indicates that the goodness of fit statistics slightly increases when data are inte-
grated for different buffer widths. Therefore, based on statistical parameters, SWM 
does not yield better estimates than SPM.

Table 6. Comparison of Best SPM and SWM Models

Validation
Models developed from SPM and SWM indicate that the SPM model using a 0.25-
mile buffer width data and the SWM model based on 1/D2 are the best models 
to estimate bus-stop transit ridership. While statistical parameters indicate that 
SWM does not yield better estimates, a validation of these models would provide 
an understanding of how accurate these models are in replicating real-world data.

A total of 128 bus stops that were not used to develop models were selected to 
validate and assess the two best models (SPM model using 0.25-mile buffer width 
data and SWM model based on 1/D2). Results obtained from validation showed 
that the SPM model using 0.25-mile buffer width data underestimated ridership 
for 67 percent of bus stops, while the SWM model based on 1/D2 underestimated 
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ridership for 63 percent of bus stops. The percent difference between actual rider-
ship counts and estimates varied between -44 percent and +40 percent in the case 
of the SPM model using 0.25-mile buffer width data, while it varied between -58 
percent and +49 percent in the case of the SWM model based on 1/D2. An over-
all comparison of absolute value of percent difference between actual ridership 
counts and estimates from these SPM and SWM models indicates that they do not 
follow any specific trends to definitely state that one generates better estimates 
than the other method. As an example, Table 7 shows results obtained from valida-
tion for eight (out of 128) randomly-selected bus stops.

Table 7. Model Validation–Summary

Results from validation reiterates that using SWM (though sounds more meaning-
ful in principle), which requires more data capturing and processing efforts, may 
not yield better results than SPM using 0.25-mile buffer width data. This primarily 
could be due to the fact that transit riders are sensitive to walking distance to bus 
stops. Most riders prefer to walk for less than 5 minutes (0.25-mile distance at 4 
feet per second) to access a bus stop. Therefore, demographic, socio-economic, 
and land-use characteristics within a 0.25-mile distance from a bus stop may be suf-
ficient to statistically explain and estimate transit ridership. It should be noted that 
these characteristics account for 50 to 85 percent of the data for different weight 
combinations (functions) used in SWM.

Results for the overall best model (SPM model using 0.25-mile buffer width data) 
shown in Table 6 can be mathematically represented to estimate daily ridership at 
a bus stop as
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         (5)

where, QARA is <0.25-acre residential/apartments area, HAR is 0.25–0.5-acre 
residential area, TAR is 2-acre residential area, HC is heavy commercial area, INST 
is institutional area, LC is light commercial area, LI is light industrial area, HH0V is 
households with no vehicles, MeanHHI is mean household income, and SPLT is 
speed limit (mph). Land-use area characteristics used in this research are expressed 
in thousand square feet.

From the above equation, it can be seen that the dependent variable (the average 
daily bus transit ridership at a bus stop) increases with an increase in institutional 
area, light commercial area, heavy commercial area, the number of households 
with no vehicles, and the speed limit surrounding the bus stop within a 0.25-mile 
buffer width. Other explanatory variables (mean household income, <0.25-acre 
residential/apartments, 0.25–0.5-acre residential area, 2-acre residential, and light 
industrial) have a negative effect on the average daily bus transit ridership at a bus 
stop, i.e., average daily bus transit ridership decreases as the value of these variables 
increases.

Conclusions
The objective of this research is to develop and assess models to estimate ridership 
at the bus-stop level using Spatial Proximity Method (SPM) and Spatial Weight 
Method (SWM). A GIS tool was used to capture spatial attributes such as demo-
graphic, socio-economic, land use, and on-network characteristics surrounding 
the bus stops. Spatial data surrounding the bus stop was extracted for four dif-
ferent buffer widths (0.25, 0.5, 0.75, and 1 mile). Extracted spatial data along with 
on-network characteristics were used to develop models to estimate ridership at 
the bus-stop.

From an assessment of probability distributions to develop models, it can be con-
cluded that Negative Binomial with log-link was found to be a better fit than linear, 
Poisson with log-link, and Gamma with log-link distributions. This indicates that 
generalized linear models or count models are more appropriate to model rider-
ship at bus-stop than linear models that were used in the past.

Daily ridership at a bus stop = Exp (1.570 - 0.00012 × QARA - 0.00023 × HAR 
- 0.00014 × TAR + 0.00051 × HC + 0.00040 × INST + 0.00028 × LC - 0.00028 ×  
LI + 0.01051 × HH0V – 0.000003 × MeanHHI + 0.02801 × SPLT) 
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From an assessment of models based on data for different widths, it can be 
concluded that the model developed using a 0.25-mile buffer width has better 
goodness-of-fit values than 0.5-, 0.75-, and 1-mile buffer widths. It is, therefore, rec-
ommended as the best proximity distance to capture spatial data and estimate rid-
ership at the bus-stop. In general, SPM models exhibited distance decay behavior. 

The SWM model with Negative Binomial distribution using weights as a function 
of 1/D2 (relative weights of 70, 18, 8, 4 for buffer bandwidths 0–0.25, 0.25–0.5, 
0.5–0.75, and 0.75–1 mile, respectively) was found to be the best model than when 
compared to function 1/D and 1/D3 to estimate ridership at the bus stop.

A comparison of results (model parameters) obtained from the two spatial model-
ing methods (SPM and SWM) suggests that SWM models do not yield statistically 
different outputs than the SPM model using 0.25-mile buffer width data. Results 
obtained from validation further support that using SWM may not yield better 
results than SPM using 0.25-mile buffer width data. Therefore, demographic, socio-
economic, and land use characteristics within a 0.25-mile distance from a transit 
stop are sufficient to statistically explain and estimate bus stop transit ridership. 
This also indicates that riders are sensitive to walking distance to access a bus stop. 
More than 50 percent of riders prefer to walk ≤ 0.25 miles to access bus stops.

Models developed from the statistical analysis indicate that ridership will be high 
in areas with households with no vehicles, institutions, and commercial establish-
ments, whereas ridership will be low in areas with residences and high mean house-
hold income. Outcomes from this research help the decision makers and planners 
to better estimate bus transit ridership and identify public transit infrastructure 
that support sustainability as well as livability and a better quality of life for next 
generations.

In this research, the effect of overlapping buffer areas and temporal variation 
was not considered. Further research on distance decay measure is necessary to 
determine the effect of overlapping buffer areas to better estimate ridership at the 
bus-stop level. The function and how sensitive riders are to walking distance varies 
with the type of public transportation system (bus transit vs. monorail vs. light rail 
transit vs. commuter rail). It also may vary based on the geographic location of bus 
stops (downtown/uptown versus urban versus suburban areas) and time of the day. 
Models for different modes of public transportation by geographic location and 
time of the day, therefore, need to be developed.
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Some of the most influential explanatory variables on bus transit ridership (such as 
the effect of increases in gasoline price, service quality or level of service, provision 
of real-time transit information, trip cost, and patron safety) were not considered 
due to data availability constraints. Examining the effect of these variables in addi-
tion to those considered in this research and developing transit ridership models 
needs further investigation. 
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