73 research outputs found

    Growth Hormone Improves Growth Retardation Induced by Rapamycin without Blocking Its Antiproliferative and Antiangiogenic Effects on Rat Growth Plate

    Get PDF
    Rapamycin, an immunosuppressant agent used in renal transplantation with antitumoral properties, has been reported to impair longitudinal growth in young individuals. As growth hormone (GH) can be used to treat growth retardation in transplanted children, we aimed this study to find out the effect of GH therapy in a model of young rat with growth retardation induced by rapamycin administration. Three groups of 4-week-old rats treated with vehicle (C), daily injections of rapamycin alone (RAPA) or in combination with GH (RGH) at pharmacological doses for 1 week were compared. GH treatment caused a 20% increase in both growth velocity and body length in RGH animals when compared with RAPA group. GH treatment did not increase circulating levels of insulin-like growth factor I, a systemic mediator of GH actions. Instead, GH promoted the maturation and hypertrophy of growth plate chondrocytes, an effect likely related to AKT and ERK1/2 mediated inactivation of GSK3β, increase of glycogen deposits and stabilization of β-catenin. Interestingly, GH did not interfere with the antiproliferative and antiangiogenic activities of rapamycin in the growth plate and did not cause changes in chondrocyte autophagy markers. In summary, these findings indicate that GH administration improves longitudinal growth in rapamycin-treated rats by specifically acting on the process of growth plate chondrocyte hypertrophy but not by counteracting the effects of rapamycin on proliferation and angiogenesis

    Fetuin-A Induces Cytokine Expression and Suppresses Adiponectin Production

    Get PDF
    BACKGROUND: The secreted liver protein fetuin-A (AHSG) is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin. METHODOLOGY AND PRINCIPAL FINDINGS: Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ) was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05). Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively). These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both). Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02) and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01), and negatively with total- (r = -0.28, p = 0.02) and, particularly, high molecular weight adiponectin (r = -0.36, p = 0.01). CONCLUSIONS AND SIGNIFICANCE: We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and atherosclerosis

    Cloning and sequencing of the winged bean basic lectin

    No full text

    Structure of basic winged-bean lectin and a comparison with its saccharide-bound form

    No full text
    The crystal structure of the saccharide-free form of the basic form of winged-bean agglutinin (WBAI) has been solved by the molecular-replacement method and refined at 2.3 Angstrom resolution The final R factor is 19.74b for all data in the resolution range 8.0-2.3 Angstrom. The asymmetric unit contains two half-dimers, each located on a crystallographic twofold axis. The structure of the saccharide-free form is compared with that of the complex of WBAI wi th methyl-alpha-D-galactoside. The complex is composed of two dimers in the asymmetric unit. The intersubunit interactions in the dimer are nearly identical in the two structures The binding site of the saccharide-free structure contains three ordered water molecules at positions similar to those of the hydroxyl groups of the carbohydrate which an hydrogen bonded to the protein. Superposition of the saccharide-binding sites of the two structures shows that the major changes involve expulsion of these ordered water molecules and a shift of about 0.6 Angstrom of the main-chain atoms of the variable loop

    Molten globule-like state of peanut lectin monomer retains its carbohydrate specificity - Implications in protein folding and legume lectin oligomerization

    No full text
    A central question in biological chemistry is the minimal structural requirement of a protein that would determine its specificity and activity, the underlying basis being the importance of the entire structural element of a protein with regards to its activity vis a vis the overall integrity and stability of the protein. Although there are many reports on the characterization of protein folding/ unfolding intermediates, with considerable secondary structural elements but substantial loss of tertiary structure, none of them have been reported to show any activity toward their respective ligands. This may be a result of the conditions under which such intermediates have been isolated or due to the importance of specific structural elements for the activity. In this paper we report such an intermediate in the unfolding of peanut agglutinin that seems to retain, to a considerable degree, its carbohydrate binding specificity and activity. This result has significant implications on the molten globule state during the folding pathway(s) of proteins in general and the quaternary association in legume lectins in particular, where precise subunit topology is required for their biologic activities

    Crystallization and preliminary crystallographic analysis of winged bean acidic lectin

    No full text
    The acidic lectin (WBAII) from the winged bean (Psophocarpus tetragonolobus) binds to the H-antigenic determinant on human erythrocytes and to the T-antigenic disaccharide Gal-beta 1,3-GalNAc. Two crystal forms of WBAII were obtained in the presence of methyl-alpha-D-galactose. Form I belongs to space group R3 with unit-cell dimensions a = b = 182.11, c = 44.99 Angstrom and has one dimer in the asymmetric unit. Form II belongs to space group CZ with unit-cell dimensions a = 135.36, b = 127.25, c = 139.98 Angstrom, beta = 95.9 degrees and has four dimers in the asymmetric unit. Intensity data were collected to 3.0 Angstrom and to 3.5 Angstrom from crystals of form I and II, respectively. The structures were solved by the molecular-replacement method using the coordinates of the basic form of winged bean lectin

    BLISTER FLUID IMMUNOFLUORESCENCE IN A CASE OF PEMPHIGUS VULGARIS

    No full text
    Indirect immunofluorescence with serum is used in the diagnosis of pemphigus. We report a case in whom blister fluid was used as the specimen for indirect immunofluorecscence

    Expression of Winged Bean Basic Agglutinin in Spodoptera frugiperda insect cell expression system

    No full text
    In this paper we report the successful expression of the winged bean basic agglutinin (WBA I) in insect cells infected with a recombinant baculovirus carrying the WBA I gene and its characterization in terms of its carbohydrate binding properties. The expressed protein appears to have a lower molecular weight than the native counterpart which is consistent with the lack of glycosylation of the former. Moreover, the expressed protein maintains its dimeric nature. Hence, a role for glycosylation in modulation of dimerization of WBA I is ruled out unlike Erythrina corallodendron (EcorL). Despite this the protein is active, with its sugar specificity unaltered

    Conformational Stability of Legume Lectins Reflect Their Different Modes of Quaternary Association: Solvent Denaturation Studies on Concanavalin A and Winged Bean Acidic Agglutinin

    No full text
    Thermodynamic parameters associated with the unfolding of the legume lectin, WBA II, were determined by isothermal denaturation. The analysis of isothermal denaturation data provided values for conformational stability and heat capacity for WBA II unfolding. To explore the role of intersubunit contact in stability, we carried out similar studies under identical conditions on Concanavalin A, a legume lectin of nearly similar size, buried hydrophobic surface area and tertiary structure to that of WBA II but with a different oligomerization pattern. Both proteins showed a reversible two-state unfolding with guanidine hydrochloride. As expected, the change in heat capacity upon unfolding was similar for both proteins at 3.5 and 3.7 kcal mol^-^1 K^-^1 for Concanavalin A and WBA II, respectively. Although the GH20\bigtriangleup G_{H20} at the maximum stability of both proteins is around 16 kcal/mol, Concanavalin A exhibits greater stability at higher temperatures. The Tg obtained for Concanavalin A and WBA II were 21C21 ^\circ C apart at 87.2 and 66.6C66.6 ^\circ C, respectively. The higher conformational stability at higher temperatures and the Tg of Concanavalin A as compared to that of WBA II are largely due to substantial differences in the degree of subunit contact in these dimeric proteins. Ionic interactions and hydrogen bonding between the monomers of the two proteins also seem to play a significant role in the observed stability differences between these two proteins
    corecore