2 research outputs found

    Adenosine deaminase from Plasmodium falciparum as a Potential Drug Target in Anti- Malarial Drug Designing: A Bioinformatic Approach

    Get PDF
    Parasites are responsible for a wide variety of infectious diseases causing an enormous health and economical blight. Malaria is one such prominent disease that causes widespread infections in humans and results in innumerable deaths annually. The development of resistance of the malarial parasites to the conventional drugs has signaled for an urgent need to design new drugs in an effective way and also to identify and study new drug targets to combat this disease. The rational design of a drug is usually based on the biochemical and physiological differences between the pathogen and the host. So in this current study we focus on the striking differences in the purine metabolism of the malarial parasite Plasmodium falciparum and that of the host. Based on this, we submit a hypothesis on targeting a protein Adenosine deaminase that plays an important role in the purine metabolism of the parasite. In this study a synthetic and a natural drug were used and their efficacy was compared and analyzed

    Phytochemical Screening and Antimicrobial Activity of the Plant Extracts of Mimosa pudica L. Against Selected Microbes

    Get PDF
    Mimosa pudica L. is a creeping annual or perennial herb. It has been identified as Lajjalu in Ayurveda and has been found to have antiasthmatic, aphrodisiac, analgesic and antidepressant. In the present study the active phytocomponents of Mimosa pudica were revealed using phytochemical analysis. The antimicrobial activity of Mimosa was studied using well diffusion method. The activity was tested against Aspergillus fumigatus, Citrobacter divergens and Klebsiella pneumonia at different concentrations of 50, 100 and 200μg/disc and the results have been illustrated
    corecore