67 research outputs found

    C-H...O interactions and stacking of water molecules between pyrimidine bases in 5-nitro-1-([beta]-D-ribosyluronic acid)-uracil monohydrate [1-(5-nitro-2,4-dioxopyrimidinyl)-[beta]-D-ribofuranoic acid monohydrate]: a neutron diffraction study at 80 K

    Get PDF
    This is the publisher's version, also available electronically from http://scripts.iucr.org/cgi-bin/paper?S0567740879006506.See article for abstract.Research carried out at Brookhaven National Laboratory under contract with the US Department of Energy, and supported by its Office of Basic Energy Sciences

    Studies in molecular structure, symmetry and conformation I

    Full text link
    Crystals of 1-aminocyclooctanecarboxylic acid hydrobromide are orthorhombic, with a = 26·026, b =7·087, c = 6·149, Z = 4 and space group P 2 1 2 1 2 1 .The structure was solved in projections by direct methods and later refined with three-dimensional data using a full-matrix least-squares treatment. All hydrogen atoms were located from a difference Fourier and the final R factor for the 1128 observed reflections was 8·62 %. The molecules are held together by a series of hydrogen bonds in a three-dimensional network. A detailed discussion of the intramolecular and the intermolecular features of the structure is presented. The cyclooctane ring is found to exist in the boat-chair conformation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44829/1/10870_2005_Article_BF01198532.pd

    A FEM-MPM hybrid coupled framework based on local shear strength method for simulating rainfall/runoff-induced landslide runout

    Get PDF
    Limited by the independence and its defects of each general software package, simultaneous analysis of runoff, seepage, and large-deformation analysis is still an inevitable challenge. Generally, one of seepage, landslide-related large-deformation, and runoff is ignored or indirectly assessed during unsaturated soil landslide runout simulation. To provide a brand new solution, this paper declares a local shear strength (LSS) method to evaluate rainfall/runoff-induced reduction of the unsaturated soil shear strength. After that, a hybrid coupled hydro-mechanical framework is proposed to simulate rainfall/runoff-induced landslide runout within an unsaturated soil slope. The decrease in local shear strength corresponding to the decrease in matric suction is defined by shifting the Mohr-Coulomb (M-C) failure envelope towards compressive stress space during rainfall/runoff infiltration. Based on the proposed local shear strength method, the variable matric suction obtained from the bidirectionally coupled runoff and seepage analysis in FEM is unidirectionally transferred to the variable local shear strength for each soil material point in MPM (i.e., this is a FEM-MPM hybrid coupled model). Then, the correctness of the proposed hybrid coupled hydro-mechanical framework is effectively verified by a hypothetical homogeneous slope model. The results show that the slope stable/unstable state simulated by the proposed hybrid coupled hydro-mechanical framework has a good consistency with that simulated by the shear strength reduction technique (SSRT) and limit-equilibrium method (LEM). Afterward, combined with a case study of a natural landslide in Hokkaido, Japan, it is proved to be effective for simulating landslide runout subjected to rainfall/runoff infiltration by using the proposed hybrid coupled hydro-mechanical framework in an unsaturated soil slope
    corecore