16 research outputs found

    Artery tertiary lymphoid organs control multi-layered territorialized atherosclerosis B cell responses in aged ApoE-/- mice

    Get PDF
    Objective: Explore aorta B cell immunity in aged ApoE-/- mice. Approach and Results: Transcript maps, FACS, immunofluorescence analyses, cell transfers, and Ig-ELISPOT assays showed multi-layered atherosclerosis B cell responses in artery tertiary lymphoid organs (ATLOs). Aging-associated aorta B cell-related transcriptomes were identified and transcript atlases revealed highly territorialized B cell responses in ATLOs versus atherosclerotic lesions: ATLOs showed upregulation of bona fide B cell genes including Cd19, Ms4a1 (Cd20), Cd79a/b, and Ighm though intima plaques preferentially expressed molecules involved in non-B effector responses towards B cell-derived mediators, i.e. Fcgr3 (Cd16), Fcer1g (Cd23), and the C1q family. ATLOs promoted B cell recruitment. ATLO B-2 B cells included naïve, transitional, follicular, germinal center, switched IgG1+, IgA+, and IgE+ memory cells, plasmablasts, and long-lived plasma cells (PCs). ATLOs recruited large numbers of B-1 cells whose subtypes were skewed towards IL-10+ B-1b cells versus IL-10- B-1a cells. ATLO B-1 cells and PCs constitutively produced IgM and IgG and a fraction of PCs expressed IL-10. Moreover, ApoE-/- mice showed increased germinal center B cells in renal lymph nodes, IgM-producing PCs in the bone marrow, and higher IgM and anti-MDA-LDL IgG serum titers. Conclusions: ATLOs orchestrate dichotomic, territorialized, and multi-layered B cell responses in the diseased aorta; germinal center reactions indicate generation of autoimmune B cells within the diseased arterial wall during aging

    Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors

    Get PDF
    Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe−/− mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4+ T cells, generated CD4+, CD8+, T regulatory (Treg) effector and central memory cells, converted naive CD4+ T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin β receptors (VSMC-LTβRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTβRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe−/−Ltbr−/− and to a similar extent in aged Apoe−/−Ltbrfl/flTagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTβRs participate in atherosclerosis protection via ATLOs

    B cells and atherosclerosis

    No full text

    Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis immunity

    Get PDF
    Artery tertiary lymphoid organs (ATLOs) are atherosclerosis-associated lymphoid aggregates with varying degrees of complexity ranging from small T/B-cell clusters to well-structured lymph node-like though unencapsulated lymphoid tissues. ATLOs arise in the connective tissue that surrounds diseased arteries, i.e., the adventitia. ATLOs have been identified in aged atherosclerosis-prone hyperlipidemic apolipoprotein E-deficient (ApoE(-/-)) mice: they are organized into distinct immune cell compartments, including separate T-cell areas, activated B-cell follicles, and plasma cell niches. Analyses of ATLO immune cell subsets indicate antigen-specific T-and B-cell immune reactions within the atherosclerotic arterial wall adventitia. Moreover, ATLOs harbor innate immune cells, including a large component of inflammatory macrophages, B-1 cells, and an aberrant set of antigen-presenting cells. There is marked neoangiogenesis, irregular lymphangiogenesis, neoformation of high endothelial venules, and de novo synthesis of lymph node-like conduits. Molecular mechanisms of ATLO formation remain to be identified though media vascular smooth muscle cells may adopt features of lymphoid tissue organizer-like cells by expressing lymphorganogenic chemokines, i.e., CXCL13 and CCL21. Although these data are consistent with the view that ATLOs participate in primary T-and B-cell responses against elusive atherosclerosis-specific autoantigens, their specific protective or disease-promoting roles remain to be identified. In this review, we discuss what is currently known about ATLOs and their potential impact on atherosclerosis and make attempts to define challenges ahead

    Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis Immunity

    No full text
    Artery tertiary lymphoid organs (ATLOs) are atherosclerosis-associated lymphoid aggregates with varying degrees of complexity ranging from small T/B-cell clusters to well structured lymph node-like though unencapsulated lymphoid tissues. ATLOs arise in the connective tissue that surrounds diseased arteries, i.e. the adventitia. ATLOs have been identified in aged atherosclerosis-prone hyperlipidemic apolipoprotein-deficient (ApoE-/-) mice: They are organized into distinct immune cell compartments including separate T-cell areas, activated B-cell follicles, and plasma cell (PC) niches. Analyses of ATLO immune cell subsets indicate antigen-specific T- and B-cell immune reactions within the atherosclerotic arterial wall adventitia. Moreover, ATLOs harbor innate immune cells including a large component of inflammatory macrophages, B-1 cells, and an aberrant set of antigen-presenting cells (APCs). There is marked neoangiogenesis, irregular lymphangiogenesis, neoformation of high endothelial venules (HEVs), and de novo synthesis of lymph node-like conduits. Molecular mechanisms of ATLO formation remain to be identified though media vascular smooth muscle cells (VSMCs) may adopt features of lymphoid tissue organizer- (LTo) like cells by expressing lymphorganogenic chemokines, i.e. CXCL13 and CCL21. Although these data are consistent with the view that ATLOs participate in primary T- and B-cell responses against elusive atherosclerosis-specific autoantigens, their specific protective or disease-promoting roles remain to be identified. In this review, we discuss what is currently known about ATLOs, their potential impact on atherosclerosis, and make attempts to define challenges ahead

    B-1b Cells Possess Unique bHLH-Driven P62-Dependent Self-Renewal and Atheroprotection

    No full text
    Background: B1a and B1b lymphocytes produce IgM that inactivates oxidation-specific epitopes (IgMOSE) on LDL (low-density lipoprotein) and protects against atherosclerosis. Loss of ID3 (inhibitor of differentiation 3) in B cells selectively promotes B1b but not B1a cell numbers, leading to higher IgMOSEproduction and reduction in atherosclerotic plaque formation. Yet, the mechanism underlying this regulation remains unexplored. Methods: Bulk RNA sequencing was utilized to identify differentially expressed genes in B1a and B1b cells from Id3KO and Id3WT mice. CRISPR/Cas9 and lentiviral genome editing coupled with adoptive transfer were used to identify key Id3-dependent signaling pathways regulating B1b cell proliferation and the impact on atherosclerosis. Biospecimens from humans with advanced coronary artery disease imaging were analyzed to translate murine findings to human subjects with coronary artery disease. Results: Through RNA sequencing, P62 was found to be enriched in Id3KO B1b cells. Further in vitro characterization reveals a novel role for P62 in mediating BAFF (B-cell activating factor)-induced B1b cell proliferation through interacting with TRAF6 (tumor necrosis factor receptor 6) and activating NF-κB (nuclear factor kappa B), leading to subsequent C-MYC (C-myelocytomatosis) upregulation. Promoter-reporter assays reveal that Id3 inhibits the E2A protein from activating the P62 promoter. Mice adoptively transferred with B1 cells overexpressing P62 exhibited an increase in B1b cell number and IgMOSElevels and were protected against atherosclerosis. Consistent with murine mechanistic findings, P62 expression in human B1 cells was significantly higher in subjects harboring a function-impairing single nucleotide polymorphism (SNP) at rs11574 position in the ID3 gene and directly correlated with plasma IgMOSElevels. Conclusions: This study unveils a novel role for P62 in driving BAFF-induced B1b cell proliferation and IgMOSEproduction to attenuate diet-induced atherosclerosis. Results identify a direct role for Id3 in antagonizing E2A from activating the p62 promoter. Moreover, analysis of putative human B1 cells also implicates these pathways in coronary artery disease subjects, suggesting P62 as a new immunomodulatory target for treating atherosclerosis

    Image_3_Single-cell profiling of CD11c+ B cells in atherosclerosis.jpeg

    No full text
    Circulating CD11c+ B cells, a novel subset of activated B cells, have been linked to autoimmunity and shown to expand with age. Atherosclerosis is an age-associated disease that involves innate and adaptive immune responses to modified self-antigens. Yet, the expression of CD11c on specific B-cell subtypes and its link to atherosclerosis are poorly understood. In this study, we characterized the frequency of CD11c+ B cells in tissues in mice with aging. We observed an age-associated increase in CD11c+ B cells in the spleen and bone marrow of ApoE−/− mice, and this was associated with an increase in aortic plaque. In addition, we also utilized single-cell multi-omics profiling of 60 human subjects undergoing advanced imaging for coronary artery disease (CAD) to subtype CD11c+ B cells and determine their frequency in subjects with high and low severity of CAD. Using unsupervised clustering, we identified four distinct clusters of CD11c+ B cells, which include CD27 and IgD double negative 2 (DN2), age-associated (ABC), CD11c+ unswitched memory (USWM), and activated Naïve (aNav) B cells. We observed an increase in the frequency of both ABC B cells and DN2 B cells in patients with high CAD severity. Pathway analysis further demonstrated augmentation of autophagy, IFNg signaling, and TLR signaling in DN2 cells in high-severity CAD patients. On the other hand, an increase in the negative regulator of BCR signaling through CD72 was found in ABC cells in low-severity CAD patients. Through investigating scRNAseq of atheroma, these DN2 cells were also found to infiltrate human coronary atheroma.</p

    Image_4_Single-cell profiling of CD11c+ B cells in atherosclerosis.jpeg

    No full text
    Circulating CD11c+ B cells, a novel subset of activated B cells, have been linked to autoimmunity and shown to expand with age. Atherosclerosis is an age-associated disease that involves innate and adaptive immune responses to modified self-antigens. Yet, the expression of CD11c on specific B-cell subtypes and its link to atherosclerosis are poorly understood. In this study, we characterized the frequency of CD11c+ B cells in tissues in mice with aging. We observed an age-associated increase in CD11c+ B cells in the spleen and bone marrow of ApoE−/− mice, and this was associated with an increase in aortic plaque. In addition, we also utilized single-cell multi-omics profiling of 60 human subjects undergoing advanced imaging for coronary artery disease (CAD) to subtype CD11c+ B cells and determine their frequency in subjects with high and low severity of CAD. Using unsupervised clustering, we identified four distinct clusters of CD11c+ B cells, which include CD27 and IgD double negative 2 (DN2), age-associated (ABC), CD11c+ unswitched memory (USWM), and activated Naïve (aNav) B cells. We observed an increase in the frequency of both ABC B cells and DN2 B cells in patients with high CAD severity. Pathway analysis further demonstrated augmentation of autophagy, IFNg signaling, and TLR signaling in DN2 cells in high-severity CAD patients. On the other hand, an increase in the negative regulator of BCR signaling through CD72 was found in ABC cells in low-severity CAD patients. Through investigating scRNAseq of atheroma, these DN2 cells were also found to infiltrate human coronary atheroma.</p

    DataSheet_1_Single-cell profiling of CD11c+ B cells in atherosclerosis.pdf

    No full text
    Circulating CD11c+ B cells, a novel subset of activated B cells, have been linked to autoimmunity and shown to expand with age. Atherosclerosis is an age-associated disease that involves innate and adaptive immune responses to modified self-antigens. Yet, the expression of CD11c on specific B-cell subtypes and its link to atherosclerosis are poorly understood. In this study, we characterized the frequency of CD11c+ B cells in tissues in mice with aging. We observed an age-associated increase in CD11c+ B cells in the spleen and bone marrow of ApoE−/− mice, and this was associated with an increase in aortic plaque. In addition, we also utilized single-cell multi-omics profiling of 60 human subjects undergoing advanced imaging for coronary artery disease (CAD) to subtype CD11c+ B cells and determine their frequency in subjects with high and low severity of CAD. Using unsupervised clustering, we identified four distinct clusters of CD11c+ B cells, which include CD27 and IgD double negative 2 (DN2), age-associated (ABC), CD11c+ unswitched memory (USWM), and activated Naïve (aNav) B cells. We observed an increase in the frequency of both ABC B cells and DN2 B cells in patients with high CAD severity. Pathway analysis further demonstrated augmentation of autophagy, IFNg signaling, and TLR signaling in DN2 cells in high-severity CAD patients. On the other hand, an increase in the negative regulator of BCR signaling through CD72 was found in ABC cells in low-severity CAD patients. Through investigating scRNAseq of atheroma, these DN2 cells were also found to infiltrate human coronary atheroma.</p

    Image_1_Single-cell profiling of CD11c+ B cells in atherosclerosis.jpeg

    No full text
    Circulating CD11c+ B cells, a novel subset of activated B cells, have been linked to autoimmunity and shown to expand with age. Atherosclerosis is an age-associated disease that involves innate and adaptive immune responses to modified self-antigens. Yet, the expression of CD11c on specific B-cell subtypes and its link to atherosclerosis are poorly understood. In this study, we characterized the frequency of CD11c+ B cells in tissues in mice with aging. We observed an age-associated increase in CD11c+ B cells in the spleen and bone marrow of ApoE−/− mice, and this was associated with an increase in aortic plaque. In addition, we also utilized single-cell multi-omics profiling of 60 human subjects undergoing advanced imaging for coronary artery disease (CAD) to subtype CD11c+ B cells and determine their frequency in subjects with high and low severity of CAD. Using unsupervised clustering, we identified four distinct clusters of CD11c+ B cells, which include CD27 and IgD double negative 2 (DN2), age-associated (ABC), CD11c+ unswitched memory (USWM), and activated Naïve (aNav) B cells. We observed an increase in the frequency of both ABC B cells and DN2 B cells in patients with high CAD severity. Pathway analysis further demonstrated augmentation of autophagy, IFNg signaling, and TLR signaling in DN2 cells in high-severity CAD patients. On the other hand, an increase in the negative regulator of BCR signaling through CD72 was found in ABC cells in low-severity CAD patients. Through investigating scRNAseq of atheroma, these DN2 cells were also found to infiltrate human coronary atheroma.</p
    corecore