3 research outputs found

    Screening and identification of lactic acid bacteria with antimicrobial activity against food-borne pathogen

    No full text
    วารสารวิชาการและวิจัย มทร.พระนคร, 10 (2) : 86-93This study focused on screening and identification of lactic acid bacteria with antimicrobial activity against Escherichia coli from milk samples. There were 250 isolates, showing different antimicrobial activities. Five isolates with predominant anti-E. coli efficiency were chosen for the study of bacteria identification, bacterial growth as well as the stability in pH change, heating and proteolytic treatment. The sequences of 16s rDNA indicated that selected isolates were Lactobacillus sp.. The antimicrobial efficiency, described in the term of Antimicrobial Index (AI) ranged from 0.63 to 0.84. However, the anti-E coli activity did not change when performing the test under proteinase-treated condition and high temperature-treated condition. Conversely, the pH adjustment of cell-free bacterial culture to 7.0 demolished their antimicrobial activity. This data implied that their antimicrobial activities were results of acidic condition, produced by lactic acid bacteria. From this study, the selected lactic acid bacteria showed their potential as a starter culture for fermented foods.Rajamangala University of Technology Phra Nakho

    The Improvement of Natural Thai Bentonite Modified with Cationic Surfactants on Hexavalent Chromium Adsorption from an Aqueous Solution

    No full text
    This work was performed to evaluate the adsorption properties of modified Thai bentonites (MTBs) on hexavalent chromium (Cr(VI)) by using a popularly capable surfactant (hexadecyltrimethylammonium bromide (HDTMA)) compared to an alternative surfactant (cetylpyridinium chloride (CPC)). The adsorption properties of the surfactant load, adsorbent weight, contact time, initial Cr(VI) concentration, and temperature of the MTBs were evaluated. The results revealed that a higher surfactant load significantly affected the Cr(VI) adsorption, and the equilibrium adsorption was achieved at 60 min. The adsorption capacity improved when the adsorbent weight, contact time, initial concentration, and temperature increased as the highest adsorption capacities of 1CPC and 1HDTMA were 45.55 and 46.03 mg g-1, respectively. The isotherm and kinetic adsorptions were described by the Freundlich model and pseudo-second-order model, respectively, while thermodynamics indicated endothermic adsorption. After adsorption, X-ray absorption near-edge structure and extended X-ray absorption fine structure data showed that Cr ions did not change the valency state between Cr(VI) and Cr(III). Additionally, the adsorption mechanism can be depicted as the ion exchange between the Cr(VI) ion and the surfactant molecule. Structural evaluations by XRD, FTIR, FESEM, EDS, and TEM found that both MTBs (1CPC and 1HDTMA) with the best adsorption performance for Cr(VI) had obvious changes at both the interlayer structure and the external surface. The interlayer spacing was expanded from 14.85 Å to 20.48 Å (1CPC) and 18.79 Å (1HDTMA), and the new functional groups (CH2 scissoring, C–H symmetric stretching, C–H asymmetric stretching, and N–CH3 scissoring) and elemental compositions (Br and Cl) were observed in both MTBs. They demonstrated that the complete intercalation of surfactant molecules on bentonite structures supported Cr(VI) adsorption. Overall, the data indicate that MTBs were perfectly adsorbed on Cr(VI), and CPC was demonstrated to be a cheap alternative agent due to its adsorption capacity compared to the popularly capable HDTMA

    Ensiling Cyanide Residue and In Vitro Rumen Fermentation of Cassava Root Silage Treated with Cyanide-Utilizing Bacteria and Cellulase

    No full text
    Cyanide is a strong toxin in many tropical forage plants that can negatively affect ruminants. The aim of this study is to determine the cyanide removal efficiency, silage quality, and in vitro rumen fermentation of fresh cassava roots ensiled without an additive (control) and with Acremonium cellulase (AC), two cyanide-utilizing bacterial inoculants (Enterococcus feacium KKU-BF7 (BF7) and E. gallinarum KKU-BC10 (BC10)), and their combinations (BF7 + BC10, AC + BF7, AC + BC10 and AC + BF7 + BC10). A completely randomized design was used with eight treatments × four small-scale silo replicates. Additionally, extra silage samples (seven silos/treatment for individually opening after 0, 1, 3, 5, 7, 15, and 30 days of ensiling) were added to observe the changes in the total cyanide concentration and pH value. The fresh cassava root contained an optimal number of lactic acid bacteria (105 colony forming units/g fresh matter), and the contents of dry matter (DM) and total cyanides were 30.1% and 1304 mg/kg DM, respectively. After 30 days of ensiling, all silages demonstrated a low pH (p p p p p p p < 0.05), which were observed in the AC + BC10 and BF7 + BC10 treatments, respectively. Overall, our results suggested that the cyanide removal efficiency after 30 days of ensiling with good-quality cassava-root silage was approximately 39% of the initial value. The enterococci inoculants and/or AC could improve the ensiling process and cyanide removal efficiency (increasing it to between 47 and 51% of the initial value). The novel enterococci inoculants (BF7 + BC10) were associated with a decreased cyanide content and an increased CP content. They appeared to promote the methanogenesis potential of the cassava root silage. More research is required to validate the use of cyanide-utilizing bacterial inoculants in cyanogenetic plants, bioenergy fermentation, and livestock
    corecore