3 research outputs found

    PLAS-5k: Dataset of Protein-Ligand Affinities from Molecular Dynamics for Machine Learning Applications

    Get PDF
    Computational methods and recently modern machine learning methods have played a key role in structure-based drug design. Though several benchmarking datasets are available for machine learning applications in virtual screening, accurate prediction of binding affinity for a protein-ligand complex remains a major challenge. New datasets that allow for the development of models for predicting binding affinities better than the state-of-the-art scoring functions are important. For the first time, we have developed a dataset, PLAS-5k comprised of 5000 protein-ligand complexes chosen from PDB database. The dataset consists of binding affinities along with energy components like electrostatic, van der Waals, polar and non-polar solvation energy calculated from molecular dynamics simulations using MMPBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) method. The calculated binding affinities outperformed docking scores and showed a good correlation with the available experimental values. The availability of energy components may enable optimization of desired components during machine learning-based drug design. Further, OnionNet model has been retrained on PLAS-5k dataset and is provided as a baseline for the prediction of binding affinities

    Spectra to Structure: Deep Reinforcement Learning for Molecular Inverse Problem

    No full text
    Spectroscopy is the study of how matter interacts with electromagnetic radiations of specific frequencies that has led to several monumental discoveries in science. The spectra of any particular molecule is highly information-rich, yet the inverse relation from the spectra to the molecular structure is still an unsolved problem. Nuclear Magnetic Resonance (NMR) spectroscopy is one such critical tool in the tool-set for scientists to characterise any chemical sample. In this work, a novel framework is proposed that attempts to solve this inverse problem by navigating the chemical space to find the correct structure that resulted in the target spectra. The proposed framework uses a combination of online Monte- Carlo-Tree-Search (MCTS) and a set of offline trained Graph Convolution Networks to build a molecule iteratively from scratch. Our method is able to predict the correct structure of the molecule ∼80% of the time in its top 3 guesses. We believe that the proposed framework is a significant step in solving the inverse design problem of NMR spectra to molecule

    DeepSPInN - Deep reinforcement learning for molecular Structure Prediction from Infrared and 13C NMR spectra

    No full text
    Molecular spectroscopy studies the interaction of molecules with electromagnetic radiation, and interpreting the resultant spectra is invaluable for deducing the molecular structures. However, predicting the molecular structure from spectroscopic data is a strenuous task that requires highly specific domain knowledge. DeepSPInN is a deep reinforcement learning method that predicts the molecular structure when given Infrared and 13C Nuclear magnetic resonance spectra by formulating the molecular structure prediction problem as a Markov decision process (MDP) and employs Monte-Carlo tree search to explore and choose the actions in the formulated MDP. On the QM9 dataset, DeepSPInN is able to predict the correct molecular structure for 91.5% of the input spectra in an average time of 77 seconds for molecules with less than 10 heavy atoms. This study is the first of its kind that uses only infrared and 13C nuclear magnetic resonance spectra for molecular structure prediction without referring to any pre-existing spectral databases or molecular fragment knowledge bases, and is a leap forward in automated molecular spectral analysis
    corecore