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Computational methods and recently modern machine learning methods have played a key role in 
structure-based drug design. Though several benchmarking datasets are available for machine learning 
applications in virtual screening, accurate prediction of binding affinity for a protein-ligand complex 
remains a major challenge. New datasets that allow for the development of models for predicting 
binding affinities better than the state-of-the-art scoring functions are important. For the first time, 
we have developed a dataset, PLAS-5k comprised of 5000 protein-ligand complexes chosen from PDB 
database. The dataset consists of binding affinities along with energy components like electrostatic, 
van der Waals, polar and non-polar solvation energy calculated from molecular dynamics simulations 
using MMPBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) method. The calculated binding 
affinities outperformed docking scores and showed a good correlation with the available experimental 
values. The availability of energy components may enable optimization of desired components during 
machine learning-based drug design. Further, OnionNet model has been retrained on PLAS-5k dataset 
and is provided as a baseline for the prediction of binding affinities.

Background & Summary
The task of predicting binding affinity of a protein-ligand (PL) complex is of cardinal significance in the drug 
design pipeline1. In general, determining the binding affinities of PL complex through experimental assays is 
laborious and economically non-viable. To mitigate the investments in drug discovery, in-silico methods have 
been adopted over traditional experiments in initial stages of drug design. Experimentally inaccessible molecu-
lar interactions and mechanisms can be studied through computational methods. Computer-aided drug design 
(CADD) is one such promising area of drug discovery and helps to predict the best interaction model between a 
PL and use scoring functions to estimate the strength of the binding. In recent decades, researchers have increas-
ingly recognized that molecular dynamics simulation (MD) helps to overcome the major limitations of dock-
ing calculations that do not sample protein conformational rearrangements during the ligand-binding process. 
MD simulations based on binding affinity calculations using molecular mechanics with Poisson-Boltzmann 
(MM-PBSA/MM-GBSA) are therefore expected to provide significant contributions to real-world problems such 
as identification of hit and lead optimization. The most important post-processing methods for calculating the 
binding free energy of a PL complex include molecular mechanics with Poisson-Boltzmann/Generalized-Born 
and surface area (MM-PBSA/MM-GBSA), and alchemical approaches like thermodynamic integration and 
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free-energy perturbation (FEP)2. Apart from these methods, machine learning (ML) models have also been 
used for binding affinity predictions (BAP)3. ML models can enhance data-driven decision-making and have the 
potential to speed up the drug discovery process. The current ML models developed for BAP are grouped by the 
different types of encoding, topology, and atom pairs.

Interaction fingerprints framework used for binding site comparison has proven to be successful in many 
applications, ranging from assessment of docking poses to the evaluation of novel PL complexes4. Some of the 
applications include structural Protein-Ligand interaction fingerprint5, Protein-ligand extended connectivity 
fingerprint6 and most recently Substructural Molecular and Protein-Ligand Interaction Pattern Score7. In 3D 
grid-based studies, PL complex is represented using a 3D grid representation. AtomNet was one of the first 
published models that used a convolutional neural network for affinity prediction8. Few other models include 
KDEEP9, Pafnucy10, DeepAtom11, and BindScope12.

Another deep learning method that could reach the state-of-the-art performance in predicting PL interac-
tion is graph neural network. Few applications include GraphBAR13, structure-aware interactive graph neural 
network14, the model developed by Lim et al.15, and PotentialNet16. Apart from these models, other models 
such as MathDL17 and TopologyNet18 encode interactions PL using methods from algebraic topology. Models 
such as DeepBindRG19, DeepVS20, and OnionNet21 are focused on interacting atom environments of complex 
structures.

A number of datasets facilitate the development of ML-based scoring functions22 for BAP. Such ML scoring 
functions use PL information either as a complex or as two different entities. Several benchmarking datasets are 
publicly available. The BindingMOAD23, PDBbind24, and CSAR datasets25 were compiled to aid in the prediction 
of binding affinities based on experimental PL complex structures. The KIBA26 and DAVIS27 dataset highlights 
the bioactivities of the kinase protein family and their relevant inhibitors and does not include the structural 
information of PL complexes. The DUD and DUD-E datasets28 were designed to evaluate docking enrichment 
performance. However, the existing datasets are limited to crystal structures of PL complex despite the widely 
accepted role of protein flexibility in molecular recognition29. This simplified description of the complex narrows 
down the accuracy of the binding pose prediction and their corresponding scoring functions30. Herein, MD 
simulations play a major role in capturing the conformational changes in the complex structure thereby helping 
in the accurate prediction of binding affinity. This could also improve the size of the diverse datasets and enhance 
the existing scoring functions based on energetic contributions to binding affinities. In existing datasets, energy 
components are unavailable, although they are highly important for lead optimization and target-specific drug 
design. MM-PBSA is a method that provides individual energy components along with the overall binding 
affinities from MD trajectories. In recent years, MM-PBSA has become a popular method to estimate the ligand 
binding affinities and it has several applications31. Few examples include, development of potential anticancer 
compounds31,32, understanding resistance mechanism of drugs33, neural disorder34, blood disorder35, immune 
disorder36, inflammatory disorder37, metabolic disorder38, and many other major diseases39,40. Apart from these 
PL interactions, MM-PBSA calculations also play a major role in other biomolecular studies such as protein 
folding, protein-protein interaction41, and others42. Various studies also highlight the successful applications 
of MM-PBSA in virtual screening for identification of potential lead compounds43. The most recent applica-
tion includes identification of suitable inhibitors for COVID-19 targets and also repurposing of existing FDA 
approved drugs44.

In this work, we employed MD simulations on 5000 PL complexes to calculate the binding affinities using 
MM-PBSA approach. To best of our knowledge, this is the first MD-based dataset that provides binding affinities 
along with non-covalent interaction components. Comparisons have been made by calculating the correlation 
coefficients between experimentally determined values to that of calculated affinities (MM-PBSA and Docking). 
As a baseline, we have trained the OnionNet framework on our dataset. We believe that PLAS-5k and further 
work in this direction will provide the necessary impetus for the development of data-driven methods for drug 
design tasks such as hit identification, lead optimization, de novo molecular design, etc.

Methods
Data curation.  In this article, as a first step towards the development of dataset, we have selected 5000 com-
plexes randomly from PDB23 based on the following criteria (i) In these complexes, ligand is chosen to be either a 
small organic molecule or a peptide, (ii) the complex structures within 2.5 Å resolution.

System preparation.  Each protein-ligand complex chosen is composed of protein, ligand, cofactor(s) and 
crystal water molecules. The procedure of preparing the complexes for MD simulations is discussed in detail in 
the following sections, and is shown in Fig. 1.

Protein preparation.  Most of the chosen experimental protein structures are monomers, while few can be 
functional as multimers. In cases of multimers, the subunits within a distance of 8 Å of ligand molecule were 
considered for complex preparation. In case of missing residues, MODELLER program was used to build the 
missing residues in PDB structures as loop regions45. Further, protonation states of the residues in the protein 
structures were determined using the H++ server46 at the physiological pH of 7.4. For the simulations, Amber 
ff14SB parameters were used for proteins47.

Ligand preparation.  The information of total charge on the ligand was retrieved using ligand-expo and 
hydrogen atoms were added to the ligand using GaussView48 in appropriate positions49. Similar procedure 
were adopted for the cofactors. The forcefield parameters for ligand and cofactors were obtained from General 
AMBER force field (GAFF2)50 using Antechamber program51 of Ambertools52,53. AM1-BCC charges were 
assigned to the atoms of ligand and cofactor(s). In case of peptides, Amber ff14SB47 forcefield was used.
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Complex preparation.  As water molecules play an important role in mediating protein-ligand interactions, the 
crystal waters associated with the selected subunits of proteins have been considered for the studies.The “tleap” 
program of AmberTools52,53 was used to generate a complex. The systems were solvated in an orthorhombic 
water box with a 10 Å extension from the protein. To maintain the charge neutrality of the system, counter ions 
(Na+ or Cl−) were added.

Simulation setup.  Energy minimization.  Minimization was performed in two steps. First, the protein 
backbone atoms were restrained using a harmonic potential with a force constant of 10 kcal/mol/Å2 in 1000 step 
minimization using L-BFGS minimizer was carried out. Further, the spring constant was reduced in ten steps and 
energy minimization was performed. In each step, the force constant was scaled by half. Finally, the harmonic 
restraints were turned off and minimization was carried out for another 1000 steps.

Simulating to target temperature (300 K).  After energy minimization, short MD simulation was performed 
with a timestep of 2 fs in NPT ensemble, with position restraints on backbone atoms using harmonic potential 
with spring constant of 1 kcal/mol/Å2. The particle mesh Ewald (PME) method was used to compute the long 
range interactions and the non-bonded interactions were truncated at 10.0 Å. The bonds involving hydrogen 
atoms were constrained. The temperature of the system was maintained using Langevin thermostat with a fric-
tion coefficient of 5 ps−1. The system temperature was raised from 50 K to 300 K by increasing the temperature 
by 1 K in every 100 steps (200 fs). Finally, after reaching target temperature (300 K), simulations were performed 
for 1 ns in the NVT ensemble.

Multiple independent simulations.  Studies have reported that many short run independent simulations are 
more effective than a single long run, and it will decrease the uncertainty for the predicted binding affinities54–56. 
In general, the independent simulations are performed with different set of random initial velocities and initial 
structures taken during the minimization. The initial structures were generated from energy minimization in 
40000 steps. At every 10000 steps, the structures were saved to start five independent simulations (including the 
starting structure).

In the next stage, all the restraints were released and the atoms were allowed to move freely. The system was 
equlibrated in the NPT ensemble at 300 K and 1 atm using a Langevin thermostat and Monte Carlo barostat 
for 2 ns. Finally, a production run was performed for 4 ns in the NPT ensemble, and the trajectories were saved 
every 100 ps for the post-processing analysis and free energy calculations. Molecular dynamics simulations have 
been carried out using the OpenMM 7.2.0 program57.

Molecular-Mechanics Poisson Boltzmann Surface Area (MM-PBSA) calculations.  MM-PBSA has 
been extensively used in CADD, as it is less expensive compared to alchemical free energy methods. Binding free 
energy of a PL complex is calculated according to the following equation.

Fig. 1  Protocol for input preparation and simulations.
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G E G (1)MM PBSA MM SolΔ = Δ + Δ−

Further, ΔEMM is divided into sum of electrostatic interaction energy ΔEele, and van der Waals interaction 
energy ΔEvdw (Eq. (2)). The solvation free energy ΔGsol, is defined as sum of polar ΔGpol, and non-polar contri-
butions ΔGnp (Eq. (3)).

Δ = Δ + ΔE E E (2)MM ele vdw

Δ = Δ + ΔG G G (3)Sol pol np

Polar solvation energy, ΔGpol was calculated using the PBSA method as implemented in the AMBER20 pro-
gram and non-polar contributions were determined using Linear Combinations of Pairwise Overlap (LCPO) 
method58.

Both experimental and CADD have highlighted the role of water molecules in PL binding as they aid in 
water mediated hydrogen bond interactions59–61. In our study we have considered two water molecules (see SI 
for more details and Supplementary Figure S1), which are near to the PL interaction site. The internal dielectric 
constant 4 was considered, as several studies reported good performance in predicting binding affinity62–64. The 
binding affinity for each complex was calculated by single trajectory approach. From the complex, protein and 
ligand are extracted and their affinities were calculated separately. The reported binding affinities are the mean 
of the ΔG calculated from all the five independent runs.

Docking protocol.  In structure-based drug design, docking studies have been used to determine the binding 
pose and affinities. The docking results are obtained by the simplified description of the complex which lacks 
true dynamics of the system and explicit water molecules30. On the other hand, it is been reported that end-point 
methods, such as MM-PBSA/MM-GBSA, are based on snapshots of MD simulations trajectories and they tend 
to overcome the limitations of docking and provide more accurate results than docking scoring functions. In this 
work, docking studies were performed for structures with known experimental binding affinities using AutoDock 
vina65. The crystal structures of all PL complexes were retrieved from PDB database and were refined by removing 
heteroatoms. Further, hydrogen atoms were added and Kollman charges were assigned to the protein structures. 
For ligands, Gasteiger partial atomic charges were assigned and all flexible torsion angles were defined using 
AUTOTORS. The active site of each target was discretized through a grid and the docking calculations were 
performed with default parameters66.

Data Records
PLAS-5k dataset (https://hai.iiit.ac.in/datasets.html) can be searched using the PDB id as a query and an exam-
ple of data retrieval from the PLAS-5k database is illustrated in Supplementary Figure S2. After submitting 
the query the results are displayed and it gives information on the total binding affinity and different energy 
components like van der Waals interaction energy, electrostatic energy, polar and non-polar solvation energies. 
Structural visualization of the protein-ligand complex is available for each entry. The initial structures of all the 
5000 protein ligand complexes are available in PDB format and the csv file containing information about binding 
affinity components can be accessed through figshare67.

Technical Validation
Overall structures of the protein-ligand complexes.  In the present work, we performed MD simu-
lations to capture several conformations of the PL complex to incorporate the flexibility of protein in binding 
affinity calculations. The experimental structure of a complex is taken as a reference in the RMSD calculation of 
both protein and ligand over the simulation trajectory. In order to capture the conformations of ligand, the struc-
ture of the protein was superimposed primarily and the RMSD of protein and ligand was measured separately 
for all five independent runs. The cumulative RMSD of protein and ligand for each of the complexes is calculated 
over all 200 frames (40 from each simulation), and the corresponding distributions are shown in Supplementary 
Figure S3. The long tail in the distributions are due to the presence of flexible groups present in protein (loops) 
and ligand. Since the RMSD for ligands peak at <1 Å and the majority fall below 3 Å, the ligands remain stably 
bound throughout the simulations. Our dataset covers wide range of ligands and the distribution of molecular 
weights of these ligands is shown in Supplementary Figure S4.

Experimentally, the binding affinity of a protein-ligand complex is expressed in terms of dissociation con-
stant (Kd) or inhibition constant (Ki). This experimentally determined binding equilibrium constant is related 
to the binding free energy as,

Δ = − = −G k T lnK k T ln K(1/ ) (4)expt B i B d

MM-PBSA approach has been widely accepted as an efficient and reliable free energy method in estimating 
PL binding interactions and has high correlation with experimental binding affinity68 especially for a given pro-
tein with respect to multiple ligands. A combination of interaction energetic components from MM-PBSA and 
ML methods help in developing models that could identify suitable inhibitors for a specific target69. The calcu-
lated binding free energies using MM-PBSA method span a wide range of values capturing a broad distribution 
suitable for developing ML models (Supplementary Figure S5). Having a knowledge on these large interval 
values of calculated binding affinity for diverse dataset, would help in extracting feature representation of PL 
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complexes and train reliable regression models that can help in predicting binding affinity of a novel complex, 
and for use in other applications such as molecule generation.

Comparison of experimental vs calculated binding affinities.  For comparison study, we made a 
subset (2000 complexes) of 5000 complexes, whose experimental binding affinities are known. The calculated 
binding affinities based on docking studies and MM-PBSA method were compared with the experimental values. 
The Spearman rank correlation coefficient (Rs) and Pearson correlation coefficient (Rp) were used to evaluate the 
ranking of binding affinities and their correlation with experimental data respectively. As seen in Fig. 2, the (Rp) 
was 0.385 for docking studies with (Rs) of 0.390, while the studies based on MM-PBSA show relatively stronger 
correlation with (Rp) and (Rs) of 0.585 and 0.598 respectively. This indicates that ML based scoring functions 
developed using PLAS-5k dataset are expected to be more reliable than the traditional scoring functions.

Class specific performance.  The dataset was classified into seven different classes as follows: (i) 
Transferases, (ii) Hydrolases, (iii) Isomerases, (iv) Oxido-reductases, (v) Ligases, (vi) Lyases, and (vii) Others. 
These enzymes are essential biological catalysts involved in a number of chemical transformations pertaining 
to life. From the Table 1 and Supplementary Figures S6, S7 it can be noted that the binding affinities predicted 
through MM-PBSA shows good correlation with the experimental value for most of the classes compared to 
docking affinities.

Target-specific performance: experimental vs docking and MM-PBSA.  Performance of HIV-1 pro-
tease targets.  HIV-1 Protease is an essential enzyme in the life cycle of HIV as they play an important role in 
viral replication and maturation. The discovery of HIV-1 protease inhibitors in the last 25 years is a major success 
in structure based drug design. There are totally nine FDA approved protease inhibitors. A lot of efforts have 
been made in drug discovery process in development of next-generation protease inhibitors beyond the currently 

Fig. 2  Correlation plots between the experimental and calculated binding affinities for a subset with 2000 
pdbids. The binding affinities are calculated (a) using Auto-dock Vina, and (b) using MM-PBSA.

Enzyme class
Number of complexes 
in each class Rp

Docking Rs
Docking −Rp

MM PBSA −Rs
MM PBSA

Transferase 613 0.456 0.454 0.521 0.517

Hydrolase 572 0.345 0.357 0.620 0.670

Oxido-reductases 273 0.475 0.413 0.325 0.328

Isomerase 56 0.603 0.625 0.694 0.707

Ligase 72 0.432 0.419 0.667 0.662

Lyase 36 0.438 0.358 0.534 0.492

Others 378 0.411 0.403 0.529 0.552

Table 1.  Correlation between experimental and predicted binding free energies for different enzyme classes on 
a subset of PLAS-5k containing 2000 pdbids, whose experimental binding affinities are available. In this subset 
peptide inhibitors were not considered.
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approved protease inhibitors. This shows that until today, HIV-1 protease continues to be one of the attractive 
targets as they continue to play an important role in drug discovery70–74.

Docking studies of HIV-1 protease with FDA approved drugs shows that (Rp) and (Rs) were 0.25 and 0.09 
respectively (Fig. 3a). As shown in Fig. 3b, in case of MM-PBSA calculations, the simulation results show good 
correlation of 0.52 (Rp) and 0.68 (Rs). The linear correlation coefficient (Rp) is marginally good, but the Spearman 
ranking coefficient showed better performance than that of Rp, which is more essential characteristic in drug 
discovery.

Performance of tuberculosis targets.  Tuberculosis (TB), a contagious and potentially fatal disease continues to 
be a major health problem worldwide. Though tremendous progress has been made in anti-TB therapy over the 
last seven decades to eradicate the disease, TB continues to affect millions of people worldwide75. Numerous 
efforts have been made in drug discovery to search new antitubercular agents that can inhibit the drug resistant 
strains76,77. With this motivation, we selected TB targets to assess the performance of our dataset. As observed 
for HIV-1 protease, even the TB targets showed better performance in case of MM-PBSA calculations with cor-
relation values (Rp) and (Rs) ranking of 0.56 and 0.49 respectively, whereas the docking results showed values of 
0.24 (Rp) and 0.28 (Rs). The correlation plots for tuberculosis targets are shown in Fig. 3(c,d).

Fig. 3  Prediction of binding affinity based on correlation with experimental data: FDA approved drugs for 
HIV-I protease targets (a) Experimental vs Docking, (b) Experimental vs MM-PBSA; For Tuberculosis targets - 
(c) Experimental vs Docking (d) Experimental vs MM-PBSA.
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Components of the binding free energies.  Non-bonded/non-covalent interactions play a crucial role in stabi-
lizing the protein-ligand complexes and a detailed understanding of these interactions can provide valuable 
insights in drug design. One of the advantages about PLAS-5k is that it provides protein-ligand interactions in 
terms of electrostatic interactions, van der Waals interactions, polar and non-polar contributions to solvation 
free energy. The distribution plots are shown in Supplementary Figure S8. A knowledge of these individual 
energy components (Eq. (1)) could help the researchers to have an tailored procedure in lead optimization of 
drug discovery process.

Machine learning benchmark.  Prediction of binding affinity of a PL complex is a critical step in 
drug design, and ML methods have begin to make significant contributions. One of the pioneering model is 
OnionNet21. Taking various features derived from 3D molecular structure as a input and known binding affinities 
it predicts binding affinity for a unknown complex via use of Convolutional Neural Network (CNN). PLAS-5k 
data, was trained and tested using OnionNet model. A 10-fold validation was employed, where the dataset was 
divided into 10 equal parts and 9-parts were used for training the model, rest for testing. This was employed due 
to the size constraint of the dataset. The average RMSE across all the 10-fold split was 5.7 kcal/mol and with an Rp 
of 0.96, as shown in Fig. 4.

Code availability
No custom code was used in the creation of this database. We used OnionNet21 http://github.com/zhenglz/
onionnet/ ML model to train on PLAS-5k dataset. Ambertools52, GaussView48, MODELLER45, and H++ server46 
were used for preparation of complex containing protein, ligand, and cofactor(s). MD simulations were carried 
using OpenMM 7.2.0 program57.
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