3,952 research outputs found

    R-Parity Violating Supersymmetry Explanation for Large t tbar Forward-Backward Asymmetry

    Full text link
    We propose a supersymmetric explanation for the anomalously high forward backward asymmetry in top pair production measured by CDF and D0. We suppose that it is due to the t-channel exchange of a right-handed sbottom which couples to d_R and t_R, as is present in the R-parity violating minimal supersymmetric standard model. We show that all Tevatron and LHC experiments' t tbar constraints may be respected for a sbottom mass between 300 and 1200 GeV, and a large Yukawa coupling >2.2, yielding A_{FB} up to 0.18. The non Standard Model contribution to the LHC charge asymmetry parameter is Delta A_C^y=0.017-0.045, small enough to be consistent with current measurements but non-zero and positive, allowing for LHC confirmation in the future within 20 fb^-1. A small additional contribution to the LHC t tbar production cross-section is also predicted, allowing a further test. We estimate that 10 fb^-1 of LHC luminosity would be sufficient to rule out the proposal to 95% confidence level, if the measurements of the t tbar cross-section turn out to be centred on the Standard Model prediction.Comment: 5 pages, 2 figures, v2 has added comments and references and increased statistics, leading to more accurate numerical predictions. v3 has typos in Fig 1 fixed: arrow directions and t and tbar labels. v4 has added discussion and corrections to Eq 4. v5 has luminosity predictions, additional checks and small numerical change

    Investigating the Supersymmetric Explanation of Anomalous CDF lepton(s) photon(s) Missing-E_T Events

    Get PDF
    The recent excess over the Standard Model prediction in the \mu \gamma missing-E_T channel reported by CDF can be well-explained by resonant smuon production with a single dominant R-parity violating coupling \lambda'_{211}, in the context of models where the gravitino is the lightest supersymmetric particle. The slepton decays to the lightest neutralino and a muon followed by neutralino decaying to a gravitino and photon. The kinematical distributions are fitted well by our hypothesis and we use them to constrain the available parameter space. The model also provides an explanation for the ee\gamma\gamma missing-E_T event observed in Run I of the Tevatron by the CDF experiment. Our model predicts an excess of between 5 and 35 events in a \gamma missing-E_T channel at Run I. We provide predictions for signatures expected by the model at Run II.Comment: 23 pages, Latex file + 10 figures and 4 Tables (included) Includes JHEP3.cls and axodraw.st

    Band structure of W and Mo by empirical pseudopotential method

    Get PDF
    The empirical pseudopotential method (EPM) is used to calculate the band structure of tungsten and molybdenum. Agreement between the calculated reflectivity, density of states, density of states at the Fermi surface and location of the Fermi surface from this study and experimental measurements and previous calculations is good. Also the charge distribution shows the proper topological distribution of charge for a bcc crystal

    Response to sub-threshold stimulus is enhanced by spatially heterogeneous activity

    Full text link
    Sub-threshold stimuli cannot initiate excitations in active media, but surprisingly as we show in this paper, they can alter the time-evolution of spatially heterogeneous activity by modifying the recovery dynamics. This results in significant reduction of waveback velocity which may lead to spatial coherence, terminating all activity in the medium including spatiotemporal chaos. We analytically derive model-independent conditions for which such behavior can be observed.Comment: 5 pages, 5 figure

    Isospectrality in Chaotic Billiards

    Full text link
    We consider a modification of isospectral cavities whereby the classical dynamics changes from pseudointegrable to chaotic. We construct an example where we can prove that isospectrality is retained. We then demonstrate this explicitly in microwave resonators.Comment: 5 pages, 7 figure

    NLO-QCD Corrections to Dilepton Production in the Randall-Sundrum Model

    Full text link
    The dilepton production process at hadron colliders in the Randall-Sundrum (RS) model is studied at next-to-leading order in QCD. The NLO-QCD corrections have been computed for the virtual graviton exchange process in the RS model, in addition to the usual gamma, Z-mediated processes of standard Drell-Yan. K-factors for the cross-sections at the LHC and Tevatron for differential in the invariant mass, Q, and the rapidity, Y, of the lepton pair are presented. We find the K-factors are large over substantial regions of the phase space.Comment: 24 pages, 12 figure

    One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator

    Get PDF
    One-way quantum computing is experimentally appealing because it requires only local measurements on an entangled resource called a cluster state. Record-size, but non-universal, continuous-variable cluster states were recently demonstrated separately in the time and frequency domains. We propose to combine these approaches into a scalable architecture in which a single optical parametric oscillator and simple interferometer entangle up to (3×1033\times 10^3 frequencies) ×\times (unlimited number of temporal modes) into a new and computationally universal continuous-variable cluster state. We introduce a generalized measurement protocol to enable improved computational performance on this new entanglement resource.Comment: (v4) Consistent with published version; (v3) Fixed typo in arXiv abstract, 14 pages, 8 figures; (v2) Supplemental material incorporated into main text, additional explanations added, results unchanged, 14 pages, 8 figures; (v1) 5 pages (3 figures) + 6 pages (5 figures) of supplemental material; submitted for publicatio
    corecore