255 research outputs found

    Detailed Enzyme Kinetics in Terms of Biochemical Species: Study of Citrate Synthase

    Get PDF
    The compulsory-ordered ternary catalytic mechanism for two-substrate two-product enzymes is analyzed to account for binding of inhibitors to each of the four enzyme states and to maintain the relationship between the kinetic constants and the reaction equilibrium constant. The developed quasi-steady flux expression is applied to the analysis of data from citrate synthase to determine and parameterize a kinetic scheme in terms of biochemical species, in which the effects of pH, ionic strength, and cation binding to biochemical species are explicitly accounted for in the analysis of the data. This analysis provides a mechanistic model that is consistent with the data that have been used support competing hypotheses regarding the catalytic mechanism of this enzyme

    The Stability and Formation of Native Proteins from Unfolded Monomers Is Increased through Interactions with Unrelated Proteins

    Get PDF
    The intracellular concentration of protein may be as high as 400 mg per ml; thus it seems inevitable that within the cell, numerous protein-protein contacts are constantly occurring. A basic biochemical principle states that the equilibrium of an association reaction can be shifted by ligand binding. This indicates that if within the cell many protein-protein interactions are indeed taking place, some fundamental characteristics of proteins would necessarily differ from those observed in traditional biochemical systems. Accordingly, we measured the effect of eight different proteins on the formation of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) from guanidinium chloride unfolded monomers. The eight proteins at concentrations of micrograms per ml induced an important increase on active dimer formation. Studies on the mechanism of this phenomenon showed that the proteins stabilize the dimeric structure of TbTIM, and that this is the driving force that promotes the formation of active dimers. Similar data were obtained with TIM from three other species. The heat changes that occur when TbTIM is mixed with lysozyme were determined by isothermal titration calorimetry; the results provided direct evidence of the weak interaction between apparently unrelated proteins. The data, therefore, are strongly suggestive that the numerous protein-protein interactions that occur in the intracellular space are an additional control factor in the formation and stability of proteins

    The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles

    Get PDF
    Background: The study of biological interaction networks is a central theme of systems biology. Here, we investigate the relationships between two distinct types of interaction networks: the metabolic pathway map and the protein-protein interaction network (PIN). It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzymes complexes. Inspecting high-throughput PIN data, it was shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In our study, we expanded this line of research to include comparisons of the underlying respective network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency. Results: Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and may thus be essential for the structural integrity of several biosynthetic systems. Conclusion: Our results reveal topological equivalences between the protein interaction network and the metabolic pathway network. Evolved protein interactions may contribute significantly towards increasing the efficiency of metabolic processes by permitting higher metabolic fluxes. Thus, our results shed further light on the unifying principles shaping the evolution of both the functional (metabolic) as well as the physical interaction network

    The Chop Gene Contains an Element for the Positive Regulation of the Mitochondrial Unfolded Protein Response

    Get PDF
    We have previously reported on the discovery of a mitochondrial specific unfolded protein response (mtUPR) in mammalian cells, in which the accumulation of unfolded protein within the mitochondrial matrix results in the transcriptional activation of nuclear genes encoding mitochondrial stress proteins such as chaperonin 60, chaperonin 10, mtDnaJ, and ClpP, but not those encoding stress proteins of the endoplasmic reticulum (ER) or the cytosol. Analysis of the chaperonin 60/10 bidirectional promoter showed that the CHOP element was required for the mtUPR and that the transcription of the chop gene is activated by mtUPR. In order to investigate the role of CHOP in the mtUPR, we carried out a deletion analysis of the chop promoter. This revealed that the transcriptional activation of the chop gene by mtUPR is through an AP-1 (activator protein-1) element. This site lies alongside an ERSE element through which chop transcription is activated in response to the ER stress response (erUPR). Thus CHOP can be induced separately in response to 2 different stress response pathways. We also discuss the potential signal pathway between mitochondria and the nucleus for the mtUPR

    Leptin Contributes to the Adaptive Responses of Mice to High-Fat Diet Intake through Suppressing the Lipogenic Pathway

    Get PDF
    Background: Leptin is an adipocyte-derived hormone that plays a critical role in energy homeostasis and lipid metabolism. Overnutrition-associated obesity is known to be accompanied by hyperleptinemia. However, the physiological actions of leptin in the metabolic responses to high-fat diet (HFD) intake remain to be completely elucidated. Here we characterized the metabolic features of mice fed high-fat diets and investigated the impact of leptin upon the lipogenic program which was found to be suppressed by HFD feeding through a proteomics approach. Results: When maintained on two types of high-fat diets for up to 16 weeks, mice with a higher fat intake exhibited increased body fat accumulation at a greater pace, developing more severely impaired glucose tolerance. Notably, HFD feeding at 4 weeks elicited the onset of marked hyperleptinemia, prior to the occurrence of apparent insulin resistance and hyperinsulinemia. Proteomic analysis revealed dramatically decreased expression of lipogenic enzymes in the white adipose tissue (WAT) from HFD-fed mice, including ATP-citrate lyase (ACL) and fatty acid synthase (FAS). The expression of ACL and FAS in the liver was similarly suppressed in response to HFD feeding. By contrast, HFD-induced downregulation of hepatic ACL and FAS was significantly attenuated in leptin receptor-deficient db/db mice. Furthermore, in the liver and WAT of wild type animals, intraperitoneal leptin administration was able to directly suppress the expression of these two lipogenic enzymes, accompanied by reduced triglyceride levels both in the liver and serum. Conclusions: These results suggest that leptin contributes to the metabolic responses in adaptation to overnutrition through suppressing the expression of lipogenic enzymes, and that the lipogenic pathway represents a key targeted peripheral component in exerting leptin's liporegulatory actions. © 2009 Jiang et al

    Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity

    Get PDF
    Background: The aim of this study was to investigate the possibility that a decreased mitochondrial ATP synthesis causes muscular and mental fatigue and plays a role in the pathophysiology of the chronic fatigue syndrome (CFS/ME).Methods: Female patients (n = 15) and controls (n = 15) performed a cardiopulmonary exercise test (CPET) by cycling at a continuously increased work rate till maximal exertion. The CPET was repeated 24 h later. Before the tests, blood was taken for the isolation of peripheral blood mononuclear cells (PBMC), which were processed in a special way to preserve their oxidative phosphorylation, which was tested later in the presence of ADP and phosphate in permeabilized cells with glutamate, malate and malonate plus or minus the complex I inhibitor rotenone, and succinate with rotenone plus or minus the complex II inhibitor malonate in order to measure the ATP production via Complex I and II, respectively. Plasma CK was determined as a surrogate measure of a decreased oxidative phosphorylation in muscle, since the previous finding that in a group of patients with external ophthalmoplegia the oxygen consumption by isolated muscle mitochondria correlated negatively with plasma creatine kinase, 24 h after exercise.Results: At both exercise tests the patients reached the anaerobic threshold and the maximal exercise at a much lower oxygen consumption than the controls and this worsened in the second test. This implies an increase of lactate, the product of anaerobic glycolysis, and a decrease of the mitochondrial ATP production in the patients. In the past this was also found in patients with defects in the mitochondrial oxidative phosphorylation. However the oxidative phosphorylation in PBMC was similar in CFS/ME patients and controls. The plasma creatine kinase levels before and 24 h after exercise were low in patients and controls, suggesting normality of the muscular mitochondrial oxidative phosphorylation.Conclusion: The decrease in mitochondrial ATP synthesis in the CFS/ME patients is not caused by a defect in the enzyme complexes catalyzing oxidative phosphorylation, but in another factor

    Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.

    Get PDF
    Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies

    Neonatal presentation of ventricular tachycardia and a Reye-like syndrome episode associated with disturbed mitochondrial energy metabolism

    Get PDF
    BACKGROUND: Hyperammonemia, hypoglycemia, hepatopathy, and ventricular tachycardia are common presenting features of carnitine-acylcarnitine translocase deficiency (Mendelian Inheritance in Man database: *212138), a mitochondrial fatty acid oxidation disorder with a lethal prognosis. These features have not been identified as the presenting features of mitochondrial cytopathy in the neonatal period. CASE PRESENTATION: We describe an atypical presentation of mitochondrial cytopathy in a 2 day-old neonate. She presented with a Reye-like syndrome episode, premature ventricular contractions and ventricular tachycardia. Initial laboratory evaluation exhibited a large amount of 3-methylglutaconic acid on urine organic acid analysis, mild orotic aciduria and a nonspecific abnormal acylcarnitine profile. The evaluation for carnitine-acylcarnitine translocase deficiency and other fatty acid oxidation disorders was negative. The patient later developed a hypertrophic cardiomyopathy and continued to be affected by recurrent Reye-like syndrome episodes triggered by infections. A muscle biopsy exhibited signs of a mitochondrial cytopathy. During the course of her disease, her Reye-like syndrome episodes have subsided; however, cardiomyopathy has persisted along with fatigue and exercise intolerance. CONCLUSIONS: This case illustrates that, in the neonatal period, hyperammonemia and ventricular tachycardia may be the presenting features of a lethal carnitine-acylcarnitine translocase deficiency or of a mitochondrial cytopathy, associated with a milder clinical course. This association broadens the spectrum of presenting phenotypes observed in patients with disturbed mitochondrial energy metabolism. Also, the presence of 3-methylglutaconic aciduria suggests mitochondrial dysfunction and mild orotic aciduria could potentially be used as a marker of mitochondrial disease

    Mitochondrial Membrane Potential in Human Neutrophils Is Maintained by Complex III Activity in the Absence of Supercomplex Organisation

    Get PDF
    textabstractBackground: Neutrophils depend mainly on glycolysis for their enegry provision. Their mitochondria maintain a membrace potential (ΔΨm), which is usually generated by the repiratory chain complexes. We investigated the source of ΔΨm in neutrophils, as compared to peripheral blood mononuclear leukocytes and HL-60 cells, and whether neutrophils can still utilise this ΔΨm for the generation of ATP. Methods and Principal Findings: Individual activity of the oxidative phosphorylation complexes was significantly reduced in neutrophils, except for complex II and V, but ΔΨm was still decreased byinhibition of complex III, confirming the role of the respiratory chain in maintaining ΔΨm. Complex V did not maintain ΔΨm by consumption of ATP, as has previously been suggested for eosinophils shuttle. Furthermore, respiratory supercomplexes, which contribute to efficient coupling of the respiratory chain to ATP synthesis, were ladding in neutrophil mitochondria. When HL-60 cells were differentiated to neutrophil-like cells, they lost mitochondrial supercimplex organisation while gaining increased aerobic glycolysis, just like neutrophils. Conclusions: We show that neutrophils can maintain ΔΨm via the glycerol-3-phosphate shuttle, wereby their mitochondria play an important role in the regulation of aerobic glycolysis, rather than producing energy themselves. This peculiar mitochondrial phenotype is acquired during differentiation from myeloid precursors
    corecore