6 research outputs found

    A Social-Welfare based OPF for Integrated Power System with Unified Power Flow Controller

    No full text
    In the present transmission systems, it has become mandatory to utilize the available resources and also to substitute it with the renewable energy sources at the earliest. The optimal utilization of the resources provides an added advantage of reduction of its cost to the end consumers of electrical energy. In this paper, a multi- objective optimal power flow (OPF) in the existence of FACTS devices has been proposed for an integrated transmission system. The uniqueness of this paper is the choice of the multi-objective function. The objective function includes minimization of voltage deviation, power loss and negative social welfare (NSW). The reduction of loss and NSW ensures the reduction of per-unit charge of electricity at the customer-end leading to a greater customer satisfaction. The FACTS device used for the problem is Unified Power Flow Controller (UPFC). The hypothesis has been applied on an IEEE 30 bus system. The Mouth Flame Optimization Algorithm has been used for the optimization of objective function. The results obtained have been presented, compared and analysed in detail

    Optimal Power Flow of Power System with Static VAR Compensator using Moth Flame Optimization with Locational Marginal Price

    No full text
    The determination of a generation unit's locational marginal price (LMP), which depends on our understanding of transmission line capacity and optimal power flow (OPF) based on reality, is crucial to evaluating the performance of the unit and determining its profit.  Minimising the total cost of the generators will lower the price of electricity on the market.  Since power flow equations are nonlinear, numerical and repetition-based approaches should be used to solve them. The equations in this paper are solved using a Moth Flame Optimization (MFO), and to enhance the performance of the MFO in its structure, for simultaneous calculations of power passing through in transmission lines so that by learning about the capacity of transmission lines, in addition to the optimal power flow becoming a reality, the price of electricity is determined using uniform market pricing, or LMP method. The FACTS device used for the problem is Static Var Compensator (SVC). Finally, values for bus voltages, line losses, power injected to buses, power travelling via lines, total generating costs, and generator profits would be included in the output of the proposed MFO algorithm. Additionally, the results of testing the proposed methodology on the IEEE 30-BUS network reveal improvements on the OPF problem

    A Combinatory Index based Optimal Reallocation of Generators in the presence of SVC using Krill Herd Algorithm

    No full text
    In the new competitive electric world, it is compulsory for the electrical industry to make effective utilization of the available resources. Optimal tuning of generators and implementation of FACTS devices has been found to be very effective in this regard. In this paper, a combination strategy of optimal tuning of generators using Krill herd (KH) algorithm in the presence of Static VAR Compensator (SVC) has been proposed. A combinatory index (CI), which is a combination of Vi/Vo index and L-index, has been formulated and verified for obtaining the optimal location of SVC. A multi objective function has been formulated for tuning the generators. The results obtained after performing Optimal Power Flow on an IEEE 30 bus system for normal loading and for severe system conditions due to line outage in the presence of SVC using KH has been verified with that of GA, to prove the effectiveness of the chosen methodology

    An application of Bat algorithm

    No full text
    The trend of increasing demand creates a gap between generation and load in the field of electrical power systems. This is one of the significant problems for the science, where it require to add new generating units or use of novel automation technology for the better utilization of the existing generating units. The automation technology highly recommends the use of speedy and effective algorithms in optimal parameter adjustment for the system components. So newly developed nature inspired Bat Algorithm (BA) applied to discover the control parameters. In this scenario, this paper considers the minimization of real power generation cost with emission as an objective. Further, to improve the power system performance and reduction in the emission, two of the thermal plants were replaced with wind power plants. And also to boost the voltage profile, Static VAR Compensator (SVC) has been integrated. The proposed case study, i.e., considering wind plant and SVC with BA, is applied on the IEEE30 bus system. Due to the incorporation of wind plants into the system, the emission output is reduced, and with the application of SVC voltage profile improved

    Strategic Placement of Solar Power Plant and Interline Power Flow Controllers for Prevention of Blackouts

    No full text
    In these post COVID times, the world is going through a massive restructuring which India can use to its benefit by attracting foreign industrial investment. The major requirement is a reliable and ecofriendly electrical power source. Of late, renewable energy sources have increasingly become popular as alternative source of electricity. They can provide immense aid in improving the reliability of the power system, when placed properly. The alternative integrated energy sources along with FACTS devices can provide a promising future for reliable power systems. In this paper, an effective location for the solar power unit and Interline Power Flow Controller using Line Severity Index is proposed in order to avoid contingencies. An Indian 62 bus system and IEEE 57 bus system are considered for the study. The Firefly algorithm is used to tune the IPFC in the Integrated Energy Systems scenario, for a dual objective function. The effect of placement of the solar unit and the optimized IPFC is analyzed and studied in detail in this paper

    Strategic Placement of Solar Power Plant and Interline Power Flow Controllers for Prevention of Blackouts

    No full text
    In these post COVID times, the world is going through a massive restructuring which India can use to its benefit by attracting foreign industrial investment. The major requirement is a reliable and ecofriendly electrical power source. Of late, renewable energy sources have increasingly become popular as alternative source of electricity. They can provide immense aid in improving the reliability of the power system, when placed properly. The alternative integrated energy sources along with FACTS devices can provide a promising future for reliable power systems. In this paper, an effective location for the solar power unit and Interline Power Flow Controller using Line Severity Index is proposed in order to avoid contingencies. An Indian 62 bus system and IEEE 57 bus system are considered for the study. The Firefly algorithm is used to tune the IPFC in the Integrated Energy Systems scenario, for a dual objective function. The effect of placement of the solar unit and the optimized IPFC is analyzed and studied in detail in this paper
    corecore