537 research outputs found
X-ray resonant magnetic scattering from structurally and magnetically rough interfaces in multilayered systems I. Specular reflectivity
The theoretical formulation of x-ray resonant magnetic scattering from rough
surfaces and interfaces is given for specular reflectivity. A general
expression is derived for both structurally and magnetically rough interfaces
in the distorted-wave Born approximation (DWBA) as the framework of the theory.
For this purpose, we have defined a ``structural'' and a ``magnetic'' interface
to represent the actual interfaces. A generalization of the well-known
Nevot-Croce formula for specular reflectivity is obtained for the case of a
single rough magnetic interface using the self-consistent method. Finally, the
results are generalized to the case of multiple interfaces, as in the case of
thin films or multilayers. Theoretical calculations for each of the cases are
illustrated with numerical examples and compared with experimental results of
magnetic reflectivity from a Gd/Fe multilayer.Comment: 44 pages, 10 figure
Orbital ordering transition in CaRuO observed with resonant x-ray diffraction
Resonant x-ray diffraction performed at the and
absorption edges of Ru has been used to investigate the magnetic and orbital
ordering in CaRuO single crystals. A large resonant enhancement due to
electric dipole transitions is observed at the wave-vector
characteristic of antiferromagnetic ordering. Besides the previously known
antiferromagnetic phase transition at K, an additional phase
transition, between two paramagnetic phases, is observed around 260 K. Based on
the polarization and azimuthal angle dependence of the diffraction signal, this
transition can be attributed to orbital ordering of the Ru electrons.
The propagation vector of the orbital order is inconsistent with some
theoretical predictions for the orbital state of CaRuO.Comment: to appear in PR
Continuous and Discontinuous Quantum Phase Transitions in a Model Two-Dimensional Magnet
The Shastry-Sutherland model, which consists of a set of spin 1/2 dimers on a
2-dimensional square lattice, is simple and soluble, but captures a central
theme of condensed matter physics by sitting precariously on the quantum edge
between isolated, gapped excitations and collective, ordered ground states. We
compress the model Shastry-Sutherland material, SrCu2(BO3)2, in a diamond anvil
cell at cryogenic temperatures to continuously tune the coupling energies and
induce changes in state. High-resolution x-ray measurements exploit what
emerges as a remarkably strong spin-lattice coupling to both monitor the
magnetic behavior and the absence or presence of structural discontinuities. In
the low-pressure spin-singlet regime, the onset of magnetism results in an
expansion of the lattice with decreasing temperature, which permits a
determination of the pressure dependent energy gap and the almost isotropic
spin-lattice coupling energies. The singlet-triplet gap energy is suppressed
continuously with increasing pressure, vanishing completely by 2 GPa. This
continuous quantum phase transition is followed by a structural distortion at
higher pressure.Comment: 16 pages, 4 figures. Accepted for publication in PNA
The dynamical response to the node defect in thermally activated remagnetization of magnetic dot array
The influence of nonmagnetic central node defect on dynamical properties of
regular square-shaped 5 x 5 segment of magnetic dot array under the thermal
activation is investigated via computer simulations. Using stochastic
Landau-Lifshitz-Gilbert equation we simulate hysteresis and relaxation
processes. The remarkable quantitative and qualitative differences between
magnetic dot arrays with nonmagnetic central node defect and magnetic dot
arrays without defects have been found.Comment: 4 pages,5 figures, submitted to J. Magn. Magn. Matte
A 4-unit-cell superstructure in optimally doped YBa2Cu3O6.92 superconductor
Using high-energy diffraction we show that a 4-unit-cell superstructure,
q0=(1/4,0,0), along the shorter Cu-Cu bonds coexists with superconductivity in
optimally doped YBCO. A complex set of anisotropic atomic displacements on
neighboring CuO chain planes, BaO planes, and CuO2 planes, respectively,
correlated over ~3-6 unit cells gives rise to diffuse superlattice peaks. Our
observations are consistent with the presence of Ortho-IV nanodomains
containing these displacements.Comment: Corrected typo in abstrac
Chromium at High Pressures: Weak Coupling and Strong Fluctuations in an Itinerant Antiferromagnet
The spin- and charge-density-wave order parameters of the itinerant
antiferromagnet chromium are measured directly with non-resonant x-ray
diffraction as the system is driven towards its quantum critical point with
high pressure using a diamond anvil cell. The exponential decrease of the spin
and charge diffraction intensities with pressure confirms the harmonic scaling
of spin and charge, while the evolution of the incommensurate ordering vector
provides important insight into the difference between pressure and chemical
doping as means of driving quantum phase transitions. Measurement of the charge
density wave over more than two orders of magnitude of diffraction intensity
provides the clearest demonstration to date of a weakly-coupled, BCS-like
ground state. Evidence for the coexistence of this weakly-coupled ground state
with high-energy excitations and pseudogap formation above the ordering
temperature in chromium, the charge-ordered perovskite manganites, and the blue
bronzes, among other such systems, raises fundamental questions about the
distinctions between weak and strong coupling.Comment: 11 pages, 9 figures (8 in color
Iterated Moire Maps and Braiding of Chiral Polymer Crystals
In the hexagonal columnar phase of chiral polymers a bias towards cholesteric
twist competes with braiding along an average direction. When the chirality is
strong, screw dislocations proliferate, leading to either a tilt grain boundary
phase or a new "moire state" with twisted bond order. Polymer trajectories in
the plane perpendicular to their average direction are described by iterated
moire maps of remarkable complexity.Comment: 10 pages (plain tex) 3 figures uufiled and appende
- …
