367 research outputs found
Microfluidic simulation of a colonial diatom chain reveals oscillatory movement
Diatoms are single-celled organisms with rigid parts in relative motion at the micro- and nanometer length scales. Some diatom species form colonies comprising many cells. In this manuscript, the results of a two-dimensional finite element computer model are presented. This model was established to discover if diatom colonies start to exhibit some kind of »pumping« behaviour when subjected to water flow. To analyze this computationally, a model diatom colony with continuously repeated units of ten cells is investigated in a fluid dynamic simulation. In this first simple model, undisturbed fluid flow is allowed for between the single cells. The cells do not move actively, and are solely moved by the water. The initial fluid velocity is assumed between 0.01 m s–1 and 1 m s–1. Acomputational result that does not change anymore with time is called a steady state solution. Such a steady state solution is reached in all calculations performed. The steady state for a chain where initially all diatoms are spaced equally (equidistant spacing) has forces that encourage the formation of cell pairs with less distance between one another. These forces result from the flow of the surrounding fluid. The steady state for a chain with initially paired cells shows the opposite effect: the pairs tend to un-pair and head for the equidistant state again. The mutual change in forces between these two states, i.e., paired and unpaired formations, suggests that these two steady states lead into each other: The computer simulations suggest that a diatom colony subjected to water flow exhibits some kind of oscillatory movement. Such movement might facilitate nutrient uptake of the diatom colony
Continuous and Discontinuous Quantum Phase Transitions in a Model Two-Dimensional Magnet
The Shastry-Sutherland model, which consists of a set of spin 1/2 dimers on a
2-dimensional square lattice, is simple and soluble, but captures a central
theme of condensed matter physics by sitting precariously on the quantum edge
between isolated, gapped excitations and collective, ordered ground states. We
compress the model Shastry-Sutherland material, SrCu2(BO3)2, in a diamond anvil
cell at cryogenic temperatures to continuously tune the coupling energies and
induce changes in state. High-resolution x-ray measurements exploit what
emerges as a remarkably strong spin-lattice coupling to both monitor the
magnetic behavior and the absence or presence of structural discontinuities. In
the low-pressure spin-singlet regime, the onset of magnetism results in an
expansion of the lattice with decreasing temperature, which permits a
determination of the pressure dependent energy gap and the almost isotropic
spin-lattice coupling energies. The singlet-triplet gap energy is suppressed
continuously with increasing pressure, vanishing completely by 2 GPa. This
continuous quantum phase transition is followed by a structural distortion at
higher pressure.Comment: 16 pages, 4 figures. Accepted for publication in PNA
Orbital ordering transition in CaRuO observed with resonant x-ray diffraction
Resonant x-ray diffraction performed at the and
absorption edges of Ru has been used to investigate the magnetic and orbital
ordering in CaRuO single crystals. A large resonant enhancement due to
electric dipole transitions is observed at the wave-vector
characteristic of antiferromagnetic ordering. Besides the previously known
antiferromagnetic phase transition at K, an additional phase
transition, between two paramagnetic phases, is observed around 260 K. Based on
the polarization and azimuthal angle dependence of the diffraction signal, this
transition can be attributed to orbital ordering of the Ru electrons.
The propagation vector of the orbital order is inconsistent with some
theoretical predictions for the orbital state of CaRuO.Comment: to appear in PR
Chromium at High Pressures: Weak Coupling and Strong Fluctuations in an Itinerant Antiferromagnet
The spin- and charge-density-wave order parameters of the itinerant
antiferromagnet chromium are measured directly with non-resonant x-ray
diffraction as the system is driven towards its quantum critical point with
high pressure using a diamond anvil cell. The exponential decrease of the spin
and charge diffraction intensities with pressure confirms the harmonic scaling
of spin and charge, while the evolution of the incommensurate ordering vector
provides important insight into the difference between pressure and chemical
doping as means of driving quantum phase transitions. Measurement of the charge
density wave over more than two orders of magnitude of diffraction intensity
provides the clearest demonstration to date of a weakly-coupled, BCS-like
ground state. Evidence for the coexistence of this weakly-coupled ground state
with high-energy excitations and pseudogap formation above the ordering
temperature in chromium, the charge-ordered perovskite manganites, and the blue
bronzes, among other such systems, raises fundamental questions about the
distinctions between weak and strong coupling.Comment: 11 pages, 9 figures (8 in color
The dynamical response to the node defect in thermally activated remagnetization of magnetic dot array
The influence of nonmagnetic central node defect on dynamical properties of
regular square-shaped 5 x 5 segment of magnetic dot array under the thermal
activation is investigated via computer simulations. Using stochastic
Landau-Lifshitz-Gilbert equation we simulate hysteresis and relaxation
processes. The remarkable quantitative and qualitative differences between
magnetic dot arrays with nonmagnetic central node defect and magnetic dot
arrays without defects have been found.Comment: 4 pages,5 figures, submitted to J. Magn. Magn. Matte
- …