540 research outputs found

    Geodesic motions versus hydrodynamic flows in a gravitating perfect fluid: Dynamical equivalence and consequences

    Full text link
    Stimulated by the methods applied for the observational determination of masses in the central regions of the AGNs, we examine the conditions under which, in the interior of a gravitating perfect fluid source, the geodesic motions and the general relativistic hydrodynamic flows are dynamically equivalent to each other. Dynamical equivalence rests on the functional similarity between the corresponding (covariantly expressed) differential equations of motion and is obtained by conformal transformations. In this case, the spaces of the solutions of these two kinds of motion are isomorphic. In other words, given a solution to the problem "hydrodynamic flow in a perfect fluid", one can always construct a solution formally equivalent to the problem "geodesic motion of a fluid element" and vice versa. Accordingly, we show that, the observationally determined nuclear mass of the AGNs is being overestimated with respect to the real, physical one. We evaluate the corresponding mass-excess and show that it is not always negligible with respect to the mass ofthe central dark object, while, under circumstances, can be even larger than the rest-mass of the circumnuclear gas involved.Comment: LaTeX file, 22 page

    Performance of three-photon PET imaging: Monte Carlo simulations

    Full text link
    We have recently introduced the idea of making use of three-photon positron annihilations in positron emission tomography. In this paper the basic characteristics of the three-gamma imaging in PET are studied by means of Monte Carlo simulations and analytical computations. Two typical configurations of human and small animal scanners are considered. Three-photon imaging requires high energy resolution detectors. Parameters currently attainable by CdZnTe semiconductor detectors, the technology of choice for the future development of radiation imaging, are assumed. Spatial resolution is calculated as a function of detector energy resolution and size, position in the field of view, scanner size, and the energies of the three gamma annihilation photons. Possible ways to improve the spatial resolution obtained for nominal parameters: 1.5 cm and 3.2 mm FWHM for human and small animal scanners, respectively, are indicated. Counting rates of true and random three-photon events for typical human and small animal scanning configurations are assessed. A simple formula for minimum size of lesions detectable in the three-gamma based images is derived. Depending on the contrast and total number of registered counts, lesions of a few mm size for human and sub mm for small animal scanners can be detected

    Spin-up of the hyperon-softened accreting neutron stars

    Full text link
    We study the spin-up of the accreting neutron stars with a realistic hyperon-softened equation of state. Using precise 2-D calculations we study the evolutionary tracks of accreting neutron stars in the angular-momentum - frequency plane. In contrast to the case of spinning-down solitary radio-pulsars, where a strong back-bending behavior has been observed, we do not see back-bending phenomenon in the accretion-powered spinning-up case. We conclude that in the case of accretion-driven spin-up the back-bending is strongly suppressed by the mass-increase effect accompanying the angular-momentum increase.Comment: 5 pages, 5 figures, accepted by Astronomy & Astrophysic

    Integrating children's perspectives in policy-making to combat poverty and social exclusion experienced by single-parent families: a transnational comparative approach

    Get PDF
    This is the final report of a research project that addressed social exclusion and poverty as it relates to single parent families and their children in particular. The rising numbers of single parent families and children throughout the EU and the increased likelihood that these families will live in poverty and experience many different forms of social exclusion in their daily lives brings in sharp focus the need to address the issue as an urgent one in our efforts to eradicate poverty and social exclusion. The focus on the children of single parent families seeks to rectify a long-standing problem in our knowledge and understanding of single parent families and the social problems they face, namely, the fact that little, if anything, is known about how these children experience and understand their lives as members of these families. The research set out to contribute to policy development and the transnational exchange of best practice by adding a much-neglected dimension on single parent families. The project used a cross-national comparative qualitative research design and methods (Mangen 1999) which involved all partners in the design of each research phase including the analysis; partners were England, Cyprus and Greece

    Detection of interictal discharges with convolutional neural networks using discrete ordered multichannel intracranial EEG

    Get PDF
    Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features which utilised specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this work, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight towards the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilised as opposed to binary IED and non-IED labels. The resulting model achieves state of the art classification performance and is also invariant to time differences between the IEDs. This study suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the dat

    First Observation of 15Be

    Get PDF
    The neutron-unbound nucleus 15Be was observed for the first time. It was populated using neutron transfer from a deuterated polyethylene target with a 59 MeV/u 14Be beam. Neutrons were measured in coincidence with outgoing 14Be particles and the reconstructed decay energy spectrum exhibits a resonance at 1.8(1) MeV. This corresponds to 15Be being unbound by 0.45 MeV more then 16Be thus significantly hindering the sequential two-neutron decay of 16Be to 14Be through this state

    Neutron Correlations in the Decay of the First Excited State of 11Li

    Full text link
    The decay of unbound excited 11Li was measured after being populated by a two-proton removal from a 13B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the 9Li fragment and neutrons. A resonance at an excitation energy of ∼1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded
    corecore