8 research outputs found
Mining Web sites using wrapper induction, named entities, and post-processing
This paper presents a new framework for extracting information from collections of Web pages across different sites. In the proposed framework, a standard wrapper induction algorithm is used that exploits named entity information that has been previously identified. The idea of post-processing the extraction results is introduced for resolving ambiguous fields and improving the overall extraction performance. Post-processing involves the exploitation of two additional sources of information: field transition probabilities, based on a trained bigram model, and confidence scores, estimated for each field by the wrapper induction system. A multiplicative model that is based on the product of those two probabilities is also considered for post-processing. Experiments were conducted on pages describing laptop products, collected from many different sites and in four different languages. The results highlight the effectiveness of the new framework. © Springer-Verlag Berlin Heidelberg 2004
A memory-based approach to anti-spam filtering for mailing lists
This paper presents an extensive empirical evaluation of memory-based learning in the context of anti-spam filtering, a novel cost-sensitive application of text categorization that attempts to identify automatically unsolicited commercial messages that flood mailboxes. Focusing on anti-spam filtering for mailing lists, a thorough investigation of the effectiveness of a memory-based anti-spam filter is performed using a publicly available corpus. The investigation includes different attribute and distance-weighting schemes, and studies on the effect of the neighborhood size, the size of the attribute set, and the size of the training corpus. Three different cost scenarios are identified, and suitable cost-sensitive evaluation functions are employed. We conclude that memory-based anti-spam filtering for mailing lists is practically feasible, especially when combined with additional safety nets. Compared to a previously tested Naive Bayes filter, the memory-based filter performs on average better, particularly when the misclassification cost for non-spam messages is high