292 research outputs found

    DNA methylation profiling to assess pathogenicity of BRCA1 unclassified variants in breast cancer

    Get PDF
    Germline pathogenic mutations in BRCA1 increase risk of developing breast cancer. Screening for mutations in BRCA1 frequently identifies sequence variants of unknown pathogenicity and recent work has aimed to develop methods for determining pathogenicity. We previously observed that tumor DNA methylation can differentiate BRCA1-mutated from BRCA1-wild type tumors. We hypothesized that we could predict pathogenicity of variants based on DNA methylation profiles of tumors that had arisen in carriers of unclassified variants. We selected 150 FFPE breast tumor DNA samples [47 BRCA1 pathogenic mutation carriers, 65 BRCAx (BRCA1-wild type), 38 BRCA1 test variants] and analyzed a subset (n=54) using the Illumina 450K methylation platform, using the remaining samples for bisulphite pyrosequencing validation. Three validated markers (BACH2, C8orf31, and LOC654342) were combined with sequence bioinformatics in a model to predict pathogenicity of 27 variants (independent test set). Predictions were compared with standard multifactorial likelihood analysis. Prediction was consistent for c.5194-12G>A (IVS 19-12 G>A) (P>0.99); 13 variants were considered not pathogenic or likely not pathogenic using both approaches. We conclude that tumor DNA methylation data alone has potential to be used in prediction of BRCA1 variant pathogenicity but is not independent of estrogen receptor status and grade, which are used in current multifactorial models to predict pathogenicity

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF
    INTRODUCTION: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. METHODS: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. RESULTS: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive associations in the general population (intraclass correlation (ICC) = 0.61, 95% confidence interval (CI): 0.45 to 0.74), and the same was true when considering ER-negative associations in both groups (ICC = 0.59, 95% CI: 0.42 to 0.72). Similarly, there was strong correlation between the ER-positive associations for BRCA1 and BRCA2 carriers (ICC = 0.67, 95% CI: 0.52 to 0.78), whereas ER-positive associations in any one of the groups were generally inconsistent with ER-negative associations in any of the others. After stratifying by ER status in mutation carriers, additional significant associations were observed. Several previously unreported variants exhibited associations at P <10(-6) in the analyses by PR status, HER2 status, TN phenotype, morphologic subtypes, histological grade and nodal involvement. CONCLUSIONS: Differences in associations of common BC susceptibility alleles between BRCA1 and BRCA2 carriers and the general population are explained to a large extent by differences in the prevalence of ER-positive and ER-negative tumors. Estimates of the risks associated with these variants based on population-based studies are likely to be applicable to mutation carriers after taking ER status into account, which has implications for risk prediction.published_or_final_versio

    Exploring the impact of the reclassification of a hereditary cancer syndrome gene variant: emerging themes from a qualitative study

    Get PDF
    The complexity of genetic variant interpretation means that a proportion of individuals who undergo genetic testing for a hereditary cancer syndrome will have their test result reclassified over time. Such a reclassification may involve a clinically significant upgrade or downgrade in pathogenicity, which may have significant implications for medical management. To date, few studies have examined the psychosocial impact of a reclassification in a hereditary cancer syndrome context. To address this gap, semi-structured telephone interviews were performed with eighteen individuals who had a BRCA1, BRCA2 or Lynch syndrome-related (MLH1, MSH2, MSH6 or PMS2) gene variant reclassified. The interviews were analysed utilising an inductive, qualitative approach and emergent themes were identified by thematic analysis. Variable levels of recall amongst participants were found. Common motivations for initial testing included a significant personal and/or family history of cancer and a desire to “find an answer”. No individual whose uncertain result was upgraded reported negative psychosocial outcomes; most reported adapting to their reclassified result and appraised their genetic testing experience positively. However, individuals whose likely pathogenic/pathogenic results were downgraded reported feelings of anger, shock and sadness post reclassification, highlighting that additional psychosocial support may be required for some. Genetic counselling issues and recommendations for clinical practice are outlined

    A genome-wide association study to identify genetic markers associated with endometrial cancer grade

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    No evidence for association of ataxia-telangiectasia mutated gene T2119C and C3161G amino acid substitution variants with risk of breast cancer

    Get PDF
    BACKGROUND: There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. METHODS: The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. RESULTS: The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. CONCLUSION: The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women

    Ovarian cancer risk in Polish BRCA1 mutation carriers is not associated with the prohibitin 3' untranslated region polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The variable penetrance of ovarian cancer in <it>BRCA1 </it>mutation carriers suggests that other genetic or environmental factors modify disease risk. The C to T transition in the 3' untranslated region of the prohibitin (<it>PHB</it>) gene alters mRNA function and has recently been shown to be associated with hereditary breast cancer risk in Polish women harbouring <it>BRCA1 </it>mutations.</p> <p>Methods</p> <p>To investigate whether the <it>PHB </it>3'UTR polymorphism also modifies hereditary ovarian cancer risk, we performed a case-control study among Polish women carrying one of the three common founder mutations (5382insC, 300 T > G, 4154delA) including 127 ovarian cases and 127 unaffected controls who had both breasts and ovaries intact. Controls were matched to cases by year of birth and <it>BRCA1 </it>mutation. Genotyping analysis was performed using PCR-based restriction fragment length polymorphism analysis. Odds ratios (OR) were calculated using conditional and penalized univariable and multivariable logistic regression.</p> <p>Results</p> <p>A comparison of the genotype frequencies between cases and controls revealed no association of the <it>PHB </it>3'UTR _CT+TT genotypes with ovarian cancer risk (OR<sub>adj </sub>1.34; 95% CI, 0.59–3.11).</p> <p>Conclusion</p> <p>Our data suggest that the <it>PHB </it>3'UTR polymorphism does not modify ovarian cancer risk in women carrying one of the three Polish <it>BRCA1 </it>founder mutations.</p

    Risk and prognostic factors for endometrial carcinoma after diagnosis of breast or Lynch‐associated cancers—A population‐based analysis

    Get PDF
    We hypothesized that endometrial carcinoma (EC) patients with a prior cancer diagnosis, after accounting for EC arising after tamoxifen‐treated prior breast carcinoma, are more likely to have an underlying genetic basis. We used information from a population‐based study to compare measured risk factors, tumor characteristics, survival, and known mismatch repair (MMR) pathogenic variant status for EC subgroups according to prior diagnosis of cancer (none, breast cancer tamoxifen‐treated or not, Lynch Syndrome (LS)‐associated cancer). Family history of any cancer was increased for EC cases with prior breast cancer, both tamoxifen treated (P = 0.005) and untreated (P = 0.01). EC cases with prior LS‐associated cancer more often reported family history of LS‐associated cancer (P = 0.04) and breast cancer (P = 0.05). EC patients with a germline pathogenic MMR gene variant were more likely to report a prior cancer than cases with a MMR proficient tumor (P = 0.0001), but more than half (54.5%) of MMR carriers reported no prior cancer. Women developing EC after tamoxifen treatment for breast cancer were significantly more likely to develop EC of malignant mixed mullerian tumor subtype (13.2% vs 2.6%, P = 1.3 × 10^{-6}), present with stage IV disease (8.8% vs 1.2%, P = 1.6 × 10^{-6}), and have poorer survival (HR_{adj} 1.96; P = 0.001). While report of prior cancer is an indicator of MMR pathogenic variant status, molecular analysis of all ECs at diagnosis is warranted to detect all patients with LS. Results also indicate the importance of longer‐term monitoring of women treated with tamoxifen for symptoms of EC, and the need for studies assessing the biological mechanism underlying the poorer prognosis of this subset of EC patients

    Cancer risks among BRCA1 and BRCA2 mutation carriers

    Get PDF
    BRCA1 and BRCA2 mutations increase breast and ovarian cancer risks substantially enough to warrant risk reduction surgery, despite variable risk estimates. Underlying this variability are methodological issues, and also complex genetic and nongenetic effects. Although many modifying factors are unidentified, known factors can already be incorporated in individualised risk prediction

    Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Get PDF
    Background: Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs) remains a challenge
    corecore