83 research outputs found

    Workshop on Geology of the Apollo 17 Landing Site

    Get PDF
    The topics covered include the following: petrology, lithology, lunar rocks, lunar soil, geochemistry, lunar geology, lunar resources, oxygen production, ilmenite, volcanism, highlands, lunar maria, massifs, impact melts, breccias, lunar crust, Taurus-Littrow, minerals, site selection, regolith, glasses, geomorphology, basalts, tectonics, planetary evolution, anorthosite, titanium oxides, chemical composition, and the Sudbury-Serenitatis analogy

    Inferred Lunar Boulder Distributions at Decimeter Scales

    Get PDF
    Block size distributions of impact deposits on the Moon are diagnostic of the impact process and environmental effects, such as target lithology and weathering. Block size distributions are also important factors in trafficability, habitability, and possibly the identification of indigenous resources. Lunar block sizes have been investigated for many years for many purposes [e.g., 1-3]. An unresolved issue is the extent to which lunar block size distributions can be extrapolated to scales smaller than limits of resolution of direct measurement. This would seem to be a straightforward statistical application, but it is complicated by two issues. First, the cumulative size frequency distribution of observable boulders rolls over due to resolution limitations at the small end. Second, statistical regression provides the best fit only around the centroid of the data [4]. Confidence and prediction limits splay away from the best fit at the endpoints resulting in inferences in the boulder density at the CPR scale that can differ by many orders of magnitude [4]. These issues were originally investigated by Cintala and McBride [2] using Surveyor data. The objective of this study was to determine whether the measured block size distributions from Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC-NAC) images (m-scale resolution) can be used to infer the block size distribution at length scales comparable to Mini-RF Circular Polarization Ratio (CPR) scales, nominally taken as 10 cm. This would set the stage for assessing correlations of inferred block size distributions with CPR returns [6]

    A Spectral Survey of the Crisium Basin Region of the Moon

    Get PDF
    The Crisium basin region harbors a number of interesting features, including geochemical and radar anomalies, light plains units and possible hidden mare deposits (cryptomaria). This report presents preliminary results of a telescopic near-infrared spectral study concerning a variety of surface units in the Crisium region. Observations were made of Mare Crisium, light plains deposits north of Taruntius crater, and the terra associated with the Crisium basin

    Remote sensing and geologic studies of the orientale basin region

    Get PDF
    Both visual and near-infrared spectral observations are combined with multispectral imaging to study the Orientale interior and exterior, the Cruger region, Grimaldi Region, the Schiller-Schickard Region, and the Humorum Region of the Moon. It was concluded that anorthosites occur in the Inner Rook Mountains of Orientale, the inner ring of Grimaldi, and the main ring of Humorum. Imaging spectroscopy shows that the entire eastern Inner Rook Mountains are composed of anorthosites. Orientale ejecta are strikingly like the surface materials in the region where Apollo 16 landed. This similarity indicates similar mineralogy, i.e., noritic anorthosite. Thus, Orientile ejecta is more mafic than the Inner Rook Mountains. This situation is also true for the Nectaris, Humorum, and Gramaldi basins. Isolated areas of the Orientale region show the presence of gabbroic rocks, but, in general, Orientale ejecta are noritic anorthosites, which contain much more low-Ca pyroxene than high-Ca pyroxene. Ancient (pre-Orientale) mare volcanism apparently occurred in several areas of the western limb

    Remote sensing and geologic studies of the terrain northwest of Humorum basin

    Get PDF
    A portion of the highlands terrain northwest of the Humorum basin, a large multiringed impact structure on the southwestern portion of the lunar nearside, exhibits anomalous characteristics in several remote sensing data sets. A variety of remote sensing studies of the terrain northwest of Humorum basin were performed in order to determine the composition and origin of the anomalous unit as well as the composition of the highland material exposed by the Humorum impact event. It was found that at least a portion of the mare-bounding ring of Humorum is composed of pure anorthosite. Other details of the study are reported

    Workshop on Mars Sample Return Science

    Get PDF
    Martian magnetic history; quarantine issues; surface modifying processes; climate and atmosphere; sampling sites and strategies; and life sciences were among the topics discussed

    Earth-Moon Impacts at ~300 Ma and ~500 Ma Ago

    Get PDF
    Impact events have played an important role in the evolution of planets and small bodies in the Solar System. Meteorites, lunar melt rocks, and lunar impact glasses provide important information about the geology of the parent body and the age of the impacting episodes. Over 2400 impact glasses from 4 Apollo regolith samples have been geochemically analyzed and a subset has been dated by the (40)Ar/(39)Ar method. New results, consistent with 2 break-ups in the Asteroid Belt, are presented here. Our previous study reported that (40)Ar/(39)Ar ages from 9 impact glasses showed that the Moon experienced significant impacts at approx. 800 Ma and at approx. 3800 Ma ago, somewhere in the vicinity of the Apollo 16 landing site. Additionally, reported on Apollo 12 samples with ages around 800 Ma, together implying global bombardment events. New data on 7 glasses from regolith sample 66041,127 show that the Moon also experienced impact events at approx. 300 Ma and > 500 Ma ago, which may coincide with the break-ups in the Asteroid Belt of the L- and H-chrondrite parent bodies. Since meteoritic evidence for these breakups has been found on Earth, it follows that evidence should be found in lunar samples as well. Additional information is included in the original extended abstract

    The Clementine Mission: Initial Results from lunar mapping

    Get PDF
    Clementine was a mission designed to test the space-worthiness of a variety of advanced sensors for use on military surveillance satellites while, at the same time, gathering useful scientific information on the composition and structure of the Moon and a near-Earth asteroid. Conducted jointly by the Ballistic Missile Defense Organization (BMDO, formerly the Strategic Defense Initiative Organization) of the US Department of Defense and NASA, Clementine was dispatched for an extended stay in the vicinity of Earth's moon on 25 January 1994 and arrived at the Moon on 20 February 1994. The spacecraft started systematic mapping on 26 February, completed mapping on 22 April, and left lunar orbit on 3 May. The entire Clementine project, from conception through end-of-mission, lasted approximately 3 years

    Human exploration of the moon and Mars: implications for Aurora

    Get PDF
    In the near future, Europe will have to decide how to respond to the new US plans for human space exploration, and how far its existing Aurora programme is consistent with them. The UK will shortly have to make a decision on whether, and to what extent, to participate in these exciting developments. Here I argue that there is a strong scientific case for the human exploration of planetary surfaces, and that the robotic exploration of Mars, as currently envisaged by Aurora, should be pursued in parallel with the development of a human spaceflight infrastructure on the Moon. Such a strategy would pave the way for eventual human missions to Mars by the middle of the century. ESA (and within ESA, the UK) should aspire to be a major participant in such a programme
    • …
    corecore