1,042 research outputs found

    Active water in protein-protein communication within the membrane: the case of SRII-HtrII signal relay.

    Get PDF
    We detect internal water molecules in a membrane-embedded receptor-transducer complex and demonstrate water structure changes during formation of the signaling state. Time-resolved FTIR spectroscopy reveals stimulus-induced repositioning of one or more structurally active water molecules to a significantly more hydrophobic environment in the signaling state of the sensory rhodopsin II (SRII)-transducer (HtrII) complex. These waters, distinct from bound water molecules within the SRII receptor, appear to be in the middle of the transmembrane interface region near the Tyr199(SRII)-Asn74(HtrII) hydrogen bond. We conclude that water potentially plays an important role in the SRII --\u3e HtrII signal transfer mechanism in the membrane\u27s hydrophobic core

    Attractant and Repellent Signaling Conformers of Sensory Rhodopsin−Transducer Complexes†

    Get PDF
    ABSTRACT: Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI-HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pKa of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by ∌1.5 units from that of the inwardly connected conformer. The pK a difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the onephoton excitation of the SRI-HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI-HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII-HtrII receptor complex has an outwardly connecte

    Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane

    Get PDF
    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents on cell membranes. To clarify the effect of cross-talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the bulk water droplet accompanied by the dissolution of actin filaments from the membrane surface. The attraction between actin filaments and membrane is attributable to an increase in the translational entropy of counterions accompanied by the adsorption of actin filaments onto the membrane surface. These results suggest that a microscopic water droplet coated with phospholipid can serve as an easy-to-handle model of cell membranes

    Fluctuating-friction molecular motors

    Full text link
    We show that the correlated stochastic fluctuation of the friction coefficient can give rise to long-range directional motion of a particle undergoing Brownian random walk in a constant periodic energy potential landscape. The occurrence of this motion requires the presence of two additional independent bodies interacting with the particle via friction and via the energy potential, respectively, which can move relative to each other. Such three-body system generalizes the classical Brownian ratchet mechanism, which requires only two interacting bodies. In particular, we describe a simple two-level model of fluctuating-friction molecular motor that can be solved analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt. Phys. Mater. vol. 9, 157] this model has been first applied to understanding the fundamental mechanism of the photoinduced reorientation of dye-doped liquid crystals. Applications of the same idea to other fields such as molecular biology and nanotechnology can however be envisioned. As an example, in this paper we work out a model of the actomyosin system based on the fluctuating-friction mechanism.Comment: to be published in J. Physics Condensed Matter (http://www.iop.org/Journals/JPhysCM

    National Seismic System Science Plan

    Get PDF
    Recent developments in digital communication and seismometry are allowing seismologists to propose revolutionary new ways to reduce vulnerability from earthquakes, volcanoes, and tsunamis, and to better understand these phenomena as well as the basic structure and dynamics of the Earth. This document provides a brief description of some of the critical new problems that can be addressed using modem digital seismic networks. It also provides an overview of existing seismic networks and suggests ways to integrate these together into a National Seismic System. A National Seismic System will consist of a number of interconnected regional networks (such as southern California, central and northern California, northeastern United States, northwestern United States, and so on) that are jointly operated by Federal, State, and private seismological research institutions. Regional networks will provide vital information concerning the hazards of specific regions. Parts of these networks will be linked to provide uniform rapid response on a national level (the National Seismic Network). A National Seismic System promises to significantly reduce societal risk to earthquake losses and to open new areas of fundamental basic research. The following is a list of some of the uses of a National Seismic System

    Polymer Induced Bundling of F-actin and the Depletion Force

    Full text link
    The inert polymer polyethylene glycol (PEG) induces a "bundling" phenomenon in F-actin solutions when its concentration exceeds a critical onset value C_o. Over a limited range of PEG molecular weight and ionic strength, C_o can be expressed as a function of these two variables. The process is reversible, but hysteresis is also observed in the dissolution of the bundles, with ionic strength having a large influence. Additional actin filaments are able to join previously formed bundles. Little, if any, polymer is associated with the bundle structure. Continuum estimates of the Asakura-Oosawa depletion force, Coulomb repulsion, and van der Waals potential are combined for a partial explanation of the bundling effect and hysteresis. Conjectures are presented concerning the apparent limit in bundle size

    Effects of thermal fluctuation and the receptor-receptor interaction in bacterial chemotactic signalling and adaptation

    Full text link
    Bacterial chemotaxis is controlled by the conformational changes of the receptors, in response to the change of the ambient chemical concentration. In a statistical mechanical approach, the signalling due to the conformational changes is a thermodynamic average quantity, dependent on the temperature and the total energy of the system, including both ligand-receptor interaction and receptor-receptor interaction. This physical theory suggests to biology a new understanding of cooperation in ligand binding and receptor signalling problems. How much experimental support of this approach can be obtained from the currently available data? What are the parameter values? What is the practical information for experiments? Here we make comparisons between the theory and recent experimental results. Although currently comparisons can only be semi-quantitative or qualitative, consistency is clearly shown. The theory also helps to sort a variety of data.Comment: 26 pages, revtex. Journal version. Analysis on another set of data on adaptation time is adde
    • 

    corecore