43 research outputs found

    STRIPA: A Rule-Based Decision Support System for Medication Reviews in Primary Care

    Get PDF
    The chronic use of multiple medicinal drugs is growing, partly because individual patients’ drugs have not been adequately prescribed by primary care physicians. In order to reduce these polypharmacy problems, the Systematic Tool to Reduce Inappropriate Prescribing (STRIP) has been created. To facilitate physicians’ use of the STRIP method, the STRIP Assistant (STRIPA) has been developed. STRIPA is a stand-alone web-based decision support system that advices physicians during the pharmacotherapeutic analysis of patients’ health records. In this paper the application’s architecture and rule engine, and the design decisions relating to the user interface and semantic interoperability, are described. An experimental validation of the prototype by general practitioners and pharmacists showed that users perform significantly better when optimizing medication with STRIPA than without. This leads the authors to believe that one process-oriented decision support system, built around a context-aware rule engine, operated through an intuitive user interface, is able to contribute to improving drug prescription practices

    ChiSCor: A Corpus of Freely Told Fantasy Stories by Dutch Children for Computational Linguistics and Cognitive Science

    Full text link
    In this resource paper we release ChiSCor, a new corpus containing 619 fantasy stories, told freely by 442 Dutch children aged 4-12. ChiSCor was compiled for studying how children render character perspectives, and unravelling language and cognition in development, with computational tools. Unlike existing resources, ChiSCor's stories were produced in natural contexts, in line with recent calls for more ecologically valid datasets. ChiSCor hosts text, audio, and annotations for character complexity and linguistic complexity. Additional metadata (e.g. education of caregivers) is available for one third of the Dutch children. ChiSCor also includes a small set of 62 English stories. This paper details how ChiSCor was compiled and shows its potential for future work with three brief case studies: i) we show that the syntactic complexity of stories is strikingly stable across children's ages; ii) we extend work on Zipfian distributions in free speech and show that ChiSCor obeys Zipf's law closely, reflecting its social context; iii) we show that even though ChiSCor is relatively small, the corpus is rich enough to train informative lemma vectors that allow us to analyse children's language use. We end with a reflection on the value of narrative datasets in computational linguistics.Comment: 12 pages, 5 figures, forthcoming in Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL

    Large Language Models: The Need for Nuance in Current Debates and a Pragmatic Perspective on Understanding

    Full text link
    Current Large Language Models (LLMs) are unparalleled in their ability to generate grammatically correct, fluent text. LLMs are appearing rapidly, and debates on LLM capacities have taken off, but reflection is lagging behind. Thus, in this position paper, we first zoom in on the debate and critically assess three points recurring in critiques of LLM capacities: i) that LLMs only parrot statistical patterns in the training data; ii) that LLMs master formal but not functional language competence; and iii) that language learning in LLMs cannot inform human language learning. Drawing on empirical and theoretical arguments, we show that these points need more nuance. Second, we outline a pragmatic perspective on the issue of `real' understanding and intentionality in LLMs. Understanding and intentionality pertain to unobservable mental states we attribute to other humans because they have pragmatic value: they allow us to abstract away from complex underlying mechanics and predict behaviour effectively. We reflect on the circumstances under which it would make sense for humans to similarly attribute mental states to LLMs, thereby outlining a pragmatic philosophical context for LLMs as an increasingly prominent technology in society.Comment: 15 pages, 0 figures, Forthcoming in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processin

    Theory of Mind in Large Language Models: Examining Performance of 11 State-of-the-Art models vs. Children Aged 7-10 on Advanced Tests

    Full text link
    To what degree should we ascribe cognitive capacities to Large Language Models (LLMs), such as the ability to reason about intentions and beliefs known as Theory of Mind (ToM)? Here we add to this emerging debate by (i) testing 11 base- and instruction-tuned LLMs on capabilities relevant to ToM beyond the dominant false-belief paradigm, including non-literal language usage and recursive intentionality; (ii) using newly rewritten versions of standardized tests to gauge LLMs' robustness; (iii) prompting and scoring for open besides closed questions; and (iv) benchmarking LLM performance against that of children aged 7-10 on the same tasks. We find that instruction-tuned LLMs from the GPT family outperform other models, and often also children. Base-LLMs are mostly unable to solve ToM tasks, even with specialized prompting. We suggest that the interlinked evolution and development of language and ToM may help explain what instruction-tuning adds: rewarding cooperative communication that takes into account interlocutor and context. We conclude by arguing for a nuanced perspective on ToM in LLMs.Comment: 14 pages, 4 figures, Forthcoming in Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL

    Development of a Pipeline for Adverse Drug Reaction Identification in Clinical Notes: Word Embedding Models and String Matching

    Get PDF
    BACKGROUND: Knowledge about adverse drug reactions (ADRs) in the population is limited because of underreporting, which hampers surveillance and assessment of drug safety. Therefore, gathering accurate information that can be retrieved from clinical notes about the incidence of ADRs is of great relevance. However, manual labeling of these notes is time-consuming, and automatization can improve the use of free-text clinical notes for the identification of ADRs. Furthermore, tools for language processing in languages other than English are not widely available. OBJECTIVE: The aim of this study is to design and evaluate a method for automatic extraction of medication and Adverse Drug Reaction Identification in Clinical Notes (ADRIN). METHODS: Dutch free-text clinical notes (N=277,398) and medication registrations (N=499,435) from the Cardiology Centers of the Netherlands database were used. All clinical notes were used to develop word embedding models. Vector representations of word embedding models and string matching with a medical dictionary (Medical Dictionary for Regulatory Activities [MedDRA]) were used for identification of ADRs and medication in a test set of clinical notes that were manually labeled. Several settings, including search area and punctuation, could be adjusted in the prototype to evaluate the optimal version of the prototype. RESULTS: The ADRIN method was evaluated using a test set of 988 clinical notes written on the stop date of a drug. Multiple versions of the prototype were evaluated for a variety of tasks. Binary classification of ADR presence achieved the highest accuracy of 0.84. Reduced search area and inclusion of punctuation improved performance, whereas incorporation of the MedDRA did not improve the performance of the pipeline. CONCLUSIONS: The ADRIN method and prototype are effective in recognizing ADRs in Dutch clinical notes from cardiac diagnostic screening centers. Surprisingly, incorporation of the MedDRA did not result in improved identification on top of word embedding models. The implementation of the ADRIN tool may help increase the identification of ADRs, resulting in better care and saving substantial health care costs

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Optimizing Therapy to Prevent Avoidable Hospital Admissions in Multimorbid Older Adults (OPERAM): cluster randomised controlled trial.

    Get PDF
    OBJECTIVE To examine the effect of optimising drug treatment on drug related hospital admissions in older adults with multimorbidity and polypharmacy admitted to hospital. DESIGN Cluster randomised controlled trial. SETTING 110 clusters of inpatient wards within university based hospitals in four European countries (Switzerland, Netherlands, Belgium, and Republic of Ireland) defined by attending hospital doctors. PARTICIPANTS 2008 older adults (≥70 years) with multimorbidity (≥3 chronic conditions) and polypharmacy (≥5 drugs used long term). INTERVENTION Clinical staff clusters were randomised to usual care or a structured pharmacotherapy optimisation intervention performed at the individual level jointly by a doctor and a pharmacist, with the support of a clinical decision software system deploying the screening tool of older person's prescriptions and screening tool to alert to the right treatment (STOPP/START) criteria to identify potentially inappropriate prescribing. MAIN OUTCOME MEASURE Primary outcome was first drug related hospital admission within 12 months. RESULTS 2008 older adults (median nine drugs) were randomised and enrolled in 54 intervention clusters (963 participants) and 56 control clusters (1045 participants) receiving usual care. In the intervention arm, 86.1% of participants (n=789) had inappropriate prescribing, with a mean of 2.75 (SD 2.24) STOPP/START recommendations for each participant. 62.2% (n=491) had ≥1 recommendation successfully implemented at two months, predominantly discontinuation of potentially inappropriate drugs. In the intervention group, 211 participants (21.9%) experienced a first drug related hospital admission compared with 234 (22.4%) in the control group. In the intention-to-treat analysis censored for death as competing event (n=375, 18.7%), the hazard ratio for first drug related hospital admission was 0.95 (95% confidence interval 0.77 to 1.17). In the per protocol analysis, the hazard ratio for a drug related hospital admission was 0.91 (0.69 to 1.19). The hazard ratio for first fall was 0.96 (0.79 to 1.15; 237 v 263 first falls) and for death was 0.90 (0.71 to 1.13; 172 v 203 deaths). CONCLUSIONS Inappropriate prescribing was common in older adults with multimorbidity and polypharmacy admitted to hospital and was reduced through an intervention to optimise pharmacotherapy, but without effect on drug related hospital admissions. Additional efforts are needed to identify pharmacotherapy optimisation interventions that reduce inappropriate prescribing and improve patient outcomes. TRIAL REGISTRATION ClinicalTrials.gov NCT02986425
    corecore