55 research outputs found

    Formation and structural characterization of Ni nanoparticles embedded in SiO₂

    Get PDF
    Face-centered cubic Ni nanoparticles were formed in SiO₂ by ion implantation and thermal annealing. Small-angle x-ray scattering in conjunction with transmission electron microscopy was used to determine the nanoparticle size as a function of annealing temperature, whereas the local atomic structure was measured with x-ray absorption spectroscopy. The influence of finite-size effects on the nanoparticle structural properties was readily apparent and included a decrease in coordination number and bond length and an increase in structural disorder for decreasing nanoparticle size. Such results are consistent with the non-negligible surface-to-volume ratio characteristic of nanoparticles. In addition, temperature-dependent x-ray absorption spectroscopy measurements showed the mean vibrational frequency (as obtained from the Einstein temperature) decreased with decreasing nanoparticle size. This reduction was attributed to the greater influence of the loosely bound, under-coordinated surface atoms prevailing over the effects of capillary pressure, the former enhancing the low frequency modes of the vibrational density of statesThis work was financially supported by the Australian Synchrotron and the Australian Research Council with access to equipment provided by the Australian Nanofabrication Facility

    Amorphization of Cu nanoparticles: effects on surface plasmon resonance

    No full text
    Crystalline copper nanoparticles (NPs) were formed in silica by multi-energy MeV ion implantations and then transformed to amorphous NPs by irradiation with 5 MeV Sn3+ ions. Optical absorptionspectra of both the phases were evaluated in the ultra-violet to near-infrared regions. Compared with corresponding crystalline NPs of the same mean diameter, the amorphous NPs showed a low-energy shift of the surface plasmon resonance around 2.2 eV and less prominent absorptionstructure around 4 eV. These differences are explained by a strongly reduced electron mean-free-path in the amorphous NPs due to the loss of lattice periodicity

    Swift heavy-ion irradiation-induced shape and structural transformation in cobalt nanoparticles

    No full text
    The shape and structural evolution of Co nanoparticles embedded in SiO₂ and subjected to swift heavy-ion irradiation have been investigated over a wide energy and fluence range. Modifications of the nanoparticle size and shape were characterized with transmission electron microscopy and small-angle x-ray scattering.Nanoparticles below a threshold diameter remained spherical in shape and progressively decreased in size under irradiation due to dissolution.Nanoparticles above the threshold diameter transformed into nanorods with their major dimension parallel to the incident ion direction. Modifications of the atomic-scale structure of the Co nanoparticles were identified with x-rayabsorption spectroscopy. Analysis of the x-rayabsorption near-edge spectra showed that prior to irradiation all Co atoms were in a metallic state, while after irradiation Co atoms were in both oxidized and metallic environments, the former consistent with dissolution. The evolution of the nanoparticle short-range order was determined from extended x-ray absorption fine structure spectroscopy. Structural changes in the Co nanoparticles as a function of ion fluence included an increase in disorder and asymmetric deviation from a Gaussian interatomic distance distribution coupled with a decrease in bondlength. Such changes resulted from the irradiation-induced decrease in nanoparticle size and subsequent dissolution.This work was financially supported by the Australian Synchrotron and the Australian Research Council with access to equipment provided by the Australian Nanofabrication Facility. ChemMatCARS Sector 15 is principally supported by the NSF/ DOE under Grant No. NSF/CHE–0822838

    Energy dependent saturation width of swift heavy ion shaped embedded Au nanoparticles

    No full text
    The transformation of Aunanoparticles (NPs) embedded in SiO₂ from spherical to rod-like shapes induced by swift heavy ion irradiation has been studied. Irradiation was performed with ¹⁹⁷Au ions at energies between 54 and 185 MeV. Transmission electron microscopy and small angle x-ray scatteringmeasurements reveal an energy dependent saturation width of the NP rods as well as a minimum size required for the NPs to elongate. The NP saturation width is correlated with the ion track diameter in the SiO₂. NP melting and in-plane strain in the irradiatedSiO₂ are discussed as potential mechanisms for the observed deformation.P.K. and M.C.R. thank the Australian Research Council for support. P.K., R.G., D.J.S., and M.C.R. were supported by the Australian Synchrotron Research Program, funded by the Commonwealth of Australia via the Major National Research Facilities Program

    Evidence for the formation of SiGe nanoparticles in Ge-implanted Si3N4

    Get PDF
    SiGe nanoparticles were formed in an amorphous Si3N4 matrix by Ge+ ion implantation and thermal annealing. The size of the nanoparticles was determined by transmission electron microscopy and their atomic structure by x-ray absorption spectroscopy. Nanoparticles were observed for excess Ge concentrations in the range from 9 to 12 at. % after annealing at temperatures in the range from 700 to 900 °C. The average nanoparticle size increased with excess Ge concentration and annealing temperature and varied from an average diameter of 1.8 ± 0.2 nm for the lowest concentration and annealing temperature to 3.2 ± 0.5 nm for the highest concentration and annealing temperature. Our study demonstrates that the structural properties of embedded SiGe nanoparticles in amorphous Si3N4 are sensitive to the implantation and post implantation conditions. Furthermore, we demonstrate that ion implantation is a novel pathway to fabricate and control the SiGe nanoparticle structure and potentially useful for future optoelectronic device applications.We also thank the Australian Research Council and Australian Synchrotron for support

    The influence of annealing conditions on the growth and structure of embedded Pt nanocrystals

    No full text
    The growth and structure of Pt nanocrystals (NCs) formed by ion implantation in a-SiO₂ has been investigated as a function of the annealing conditions. Transmission electron microscopy and small-angle x-ray scatteringmeasurements demonstrate that the annealing ambient has a significant influence on NC size. Samples annealed in either Ar, O₂, or forming gas (95% N₂: 5% H₂) at temperatures ranging from 500 °C–1300 °C form spherical NCs with mean diameters ranging from 1–14 nm. For a given temperature, annealing in Ar yields the smallest NCs. O₂ and forming gas ambients produce NCs of comparable size though the latter induces H chemisorption at 1100 °C and above, as verified with x-ray absorption spectroscopy. This H intake is accompanied by a bond-length expansion and increased structural disorder in NCs of diameter >3 nm.We thank the Australian Synchrotron Research Program and the Australian Research Council for financial support

    Energy dependent saturation width of swift heavy ion shaped embedded Au nanoparticles

    Get PDF
    The transformation of Au nanoparticles (NPs) embedded in SiO2 from spherical to rod-like shapes induced by swift heavy ion irradiation has been studied. Irradiation was performed with Au-197 ions at energies between 54 and 185 MeV. Transmission electron microscopy and small angle x-ray scattering measurements reveal an energy dependent saturation width of the NP rods as well as a minimum size required for the NPs to elongate. The NP saturation width is correlated with the ion track diameter in the SiO2. NP melting and in-plane strain in the irradiated SiO2 are discussed as potential mechanisms for the observed deformation

    Electrical and structural properties of In-implanted Si1−xGex alloys

    Get PDF
    We report on the effects of dopant concentration and substrate stoichiometry on the electrical and structural properties of In-implanted Si1−xGex alloys. Correlating the fraction of electrically active In atoms from Hall Effect measurements with the In atomic environment determined by X-ray absorption spectroscopy, we observed the transition from electrically active, substitutional In at low In concentration to electrically inactive metallic In at high In concentration. The In solid-solubility limit has been quantified and was dependent on the Si1−xGex alloy stoichiometry; the solid-solubility limit increased as the Ge fraction increased. This result was consistent with density functional theory calculations of two In atoms in a Si1−xGex supercell that demonstrated that In–In pairing was energetically favorable for x ≲ 0.7 and energetically unfavorable for x ≳ 0.7. Transmission electron microscopy imaging further complemented the results described earlier with the In concentration and Si1−xGex alloy stoichiometry dependencies readily visible. We have demonstrated that low resistivity values can be achieved with In implantation in Si1−xGex alloys, and this combination of dopant and substrate represents an effective doping protocol

    EXAFS study of the structural properties of In and In + C implanted Ge

    Get PDF
    The structural configurations of In implanted Ge have been studied via x-ray absorption spectroscopy with and without the codoping of C. In the case of In singly implanted Ge, while the In atoms occupy an substitutional site in Ge (InGe4) at low In concentration (≤0.2 at. %), they precipitate into a metallic phase (In metal) and form complexes composed of one vacancy and three Ge atoms (InVGe3) at concentration ≥ 0.6 at. %. This behaviour can be suppressed by the addition of C leading to In-C pairing to form InCGe3 complexes. This cluster enables In atoms to recover a four-fold coordinated structure and has the potential to improve the electrical activation of In atoms in Ge.We acknowledge access to NCRIS and AMMRF infrastructure at the Australian National University including the Australian National Fabrication Facility, the Heavy Ion Accelerator Capability and the Center for Advanced Microscopy. We also thank the Australian Research Council and the Australian Synchrotron for support

    Enhanced Electrical Activation in In-Implanted Si0.35Ge0.65 by C Co-Doping

    Get PDF
    In this report, we have achieved a significant increase in the electrically active dopant fraction in Indium (In)-implanted Si0.35Ge0.65, by co-doping with the isovalent element Carbon (C). Electrical measurements have been correlated with X-ray absorption spectroscopy to determine the electrical properties and the In atom lattice location. With C+ In co-doping, the solid solubility of In in Si0.35Ge0.65 was at least tripled from between 0.02 and 0.06 at% to between 0.2 and 0.6 at% as a result of C-In pair formation, which suppressed In metal precipitation. A dramatic improvement of electrical properties was thus attained in the co-doped samples.We also thank the Australian Research Council and Australian Synchrotron for support
    corecore