7 research outputs found
Diagnostic Disclosure to HIV-Infected Children: How Parents Decide when and what to Tell
Recommended from our members
Associated-particle sealed-tube neutron generators and hodoscopes for NDA applications
With radioisotope sources, gamma-ray transmission hodoscopes can inspect canisters and railcars to monitor rocket motors, can detect nuclear warheads by their characteristic strong gamma-ray absorption, or can count nuclear warheads inside a missile by low-resolution tomography. Intrinsic gamma-ray radiation from warheads can also be detected in a passive mode. Neutron hodoscopes can use neutron transmission, intrinsic neutron emission, or reactions stimulated by a neutron source, in treaty verification roles. Gamma-ray and neutron hodoscopes can be combined with a recently developed neutron diagnostic probe system, based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons, and that uses flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. 5 refs., 12 figs
Recommended from our members
APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs
A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by electronic collimation'' (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs
