145 research outputs found

    Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation

    Get PDF
    AbstractThe measles virus (MV) P gene encodes three proteins: P, an essential polymerase cofactor, and C and V, which have multiple functions including immune evasion. We show here that the MV P protein also contributes to immune evasion, and that tyrosine 110 is required to block nuclear translocation of the signal transducer and activator of transcription factors (STAT) after interferon type I treatment. In particular, MV P inhibits STAT1 phosphorylation. This is shown not only by transient expression but also by reverse genetic analyses based on a new functional infectious cDNA derived from a MV vaccine vial (Moraten strain). Our study also identifies a conserved sequence around P protein tyrosine 110 as a candidate interaction site with a cellular protein

    Palliative chemotherapy for pancreatic adenocarcinoma: a retrospective cohort analysis of efficacy and toxicity of the FOLFIRINOX regimen focusing on the older patient

    Get PDF
    Background: Pancreatic cancer occurs more frequently in older patients, but these are underrepresented in the phase III clinical studies that established the current treatment standards. This leads to uncertainty regarding the treatment of older patients with potentially toxic but active regimens like FOLFIRINOX. Methods: We conducted a retrospective analysis of patients treated according to the FOLFIRINOX protocol at our institution between 2010 and 2014 with a focus on older patients. Results: Overall survival in our cohort was 10.2 months. Only 43% of patients did not need dose adaptations, but dose reductions did not lead to an inferior survival. We did not find evidence that patients aged 65 years and older deemed fit enough for palliative treatment had more toxicities or a worse outcome than younger patients. Conclusion: We conclude that treatment with the FOLFIRINOX protocol in patients with pancreatic cancer should not be withhold from patients solely based on their chronological age but rather be based on the patient’s performance status and comorbidities

    Adjuvant radiotherapy and chemoradiation with gemcitabine after R1 resection in patients with pancreatic adenocarcinoma

    Get PDF
    Background: The purpose of the study was to evaluate the effect of radiation therapy and chemoradiation with gemcitabine (GEM) after R1 resection in patients with pancreatic adenocarcinoma (PAC). Methods: We performed a retrospective analysis of 25 patients who were treated with postoperative radiotherapy (RT) or chemoradiation (CRT) after surgery with microscopically positive resection margins for primary pancreatic cancer (PAC). Median age was 60 years (range 34 to 74 years), and there were 17 male and 8 female patients. Fractionated RT was applied with a median dose of 49.6 Gy (range 36 to 54 Gy). Eight patients received additional intraoperative radiotherapy (IORT) with a median dose of 12 Gy. Results: Median overall survival (mOS) of all treated patients was 22 months (95% confidence interval (CI) 7.9 to 36.1 months) after date of resection and 21.1 months (95% CI 7.6 to 34.6 months) after start of (C)RT. Median progression-free survival (mPFS) was 13.0 months (95% CI 0.93 to 25 months). Grading (G2 vs. G3, P = 0.005) and gender (female vs. male, P = 0.01) were significantly correlated with OS. There was a significant difference in mPFS between male and female patients (P = 0.008). A total of 11 from 25 patients experienced local tumour progression, and 19 patients were diagnosed with either locoregional or distant failure. Conclusions: We demonstrated that GEM-based CRT can be applied in analogy to neoadjuvant protocols in the adjuvant setting for PAC patients at high risk for disease recurrence after incomplete resection. Patients undergoing additive CRT have a rather good OS and PFS compared to historical control patient groups

    Imaging features of fibrolamellar hepatocellular carcinoma in gadoxetic acid-enhanced MRI

    Get PDF
    Background: Fibrolamellar hepatocellular carcinoma (FLC) is a rare malignancy occurring in young patients without cirrhosis. Objectives of our study were to analyze contrast material uptake in hepatobiliary phase imaging (HBP) in gadoxetic acid-enhanced liver MRI in patients with FLC and to characterize imaging features in sequence techniques other than HBP. Methods: In this retrospective study on histology-proven FLC, contrast material uptake in HBP was quantitatively assessed by calculating the corrected FLC enhancement index (CEI) using mean signal intensities of FLC and lumbar muscle on pre-contrast imaging and HBP, respectively. Moreover, enhancement patterns in dynamic contrast-enhanced MRI and relative signal intensities compared with background liver parenchyma were determined by two radiologists in consensus for HBP, diffusion-weighted imaging using high b-values (DWI), and T2 and T1 weighted pre-contrast imaging. Results: In 6 of 13 patients with FLC gadoxetic acid-enhanced liver MRI was available. The CEI suggested presence of HBP contrast material uptake in all FLCs. A mean CEI of 1.35 indicated FLC signal increase of 35% in HBP compared with pre-contrast imaging. All FLCs were hypointense in HBP compared with background liver parenchyma. Three of 6 FLCs had arterial hyperenhancement and venous wash-out. In DWI and T2 weighted imaging, 5 of 6 FLCs were hyperintense. In T1 weighted imaging, 5 of 6 FLCs were hypointense. Conclusion: Hepatobiliary uptake of gadoxetic acid was quantitatively measurable in all FLCs investigated in our study. The observation of hypointensity of FLCs in HBP compared with background liver parenchyma emphasizes the role of gadoxetic acid-enhanced liver MRI for non-invasive diagnosis of FLC and its importance in the diagnostic work-up of indeterminate liver lesions

    Refining the treatment of pancreatic cancer from big data to improved individual survival

    Get PDF
    Pancreatic cancer is one of the most lethal cancers worldwide, most notably in Europe and North America. Great strides have been made in combining the most effective conventional therapies to improve survival at least in the short and medium term. The start of treatment can only be made once a diagnosis is made, which at this point, the tumor volume is already very high in the primary cancer and systemically. If caught at the earliest opportunity (in circa 20% patients) surgical resection of the primary followed by combination chemotherapy can achieve 5-year overall survival rates of 30%–50%. A delay in detection of even a few months after symptom onset will result in the tumor having only borderline resectabilty (in 20%–30% of patients), in which case the best survival is achieved by using short-course chemotherapy before tumor resection as well as adjuvant chemotherapy. Once metastases become visible (in 40%–60% of patients), cure is not possible, palliative cytotoxics only being able to prolong life by few months. Even in apparently successful therapy in resected and borderline resectable patients, the recurrence rate is very high. Considerable efforts to understand the nature of pancreatic cancer through large-scale genomics, transcriptomics, and digital profiling, combined with functional preclinical models, using genetically engineered mouse models and patient derived organoids, have identified the critical role of the tumor microenvironment in determining the nature of chemo- and immuno-resistance. This functional understanding has powered fresh and exciting approaches for the treatment of this cancer

    A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer: ParvOryx02 protocol

    Get PDF
    Background: Metastatic pancreatic cancer has a dismal prognosis, with a mean six-month progression-free survival of approximately 50% and a median survival of about 11 months. Despite intensive research, only slight improvements of clinical outcome could be achieved over the last decades. Hence, new and innovative therapeutic strategies are urgently required. ParvOryx is a drug product containing native parvovirus H-1 (H-1PV). Since H-1PV was shown to exert pronounced anti-neoplastic effects in pre-clinical models of pancreatic cancer, the drug appears to be a promising candidate for treatment of this malignancy. Methods: ParvOryx02 is a non-controlled, single arm, open label, dose-escalating, single center trial. In total seven patients with pancreatic cancer showing at least one hepatic metastasis are to be treated with escalating doses of ParvOryx according to the following schedule: i) 40% of the total dose infused intravenously in equal fractions on four consecutive days, ii) 60% of the total dose injected on a single occasion directly into the hepatic metastasis at varying intervals after intravenous infusions. The main eligibility criteria are: age ≥ 18 years, disease progression despite first-line chemotherapy, and at least one hepatic metastasis. Since it is the second trial within the drug development program, the study primarily explores safety and tolerability after further dose escalation of ParvOryx. The secondary objectives are related to the evaluation of certain aspects of anti-tumor activity and clinical efficacy of the drug. Discussion: This trial strongly contributes to the clinical development program of ParvOryx. The individual hazards for patients included in the current study and the environmental risks are addressed and counteracted adequately. Besides information on safety and tolerability of the treatment after further dose escalation, thorough evaluations of pharmacokinetics and intratumoral spread as well as proof-of-concept (PoC) in pancreatic cancer will be gained in the course of the trial. Trial registration: ClinicalTrials.gov-ID: NCT02653313, Registration date: Dec. 4th, 2015

    Protocol of the IntenSify-Trial:An open-label phase I trial of the CYP3A inhibitor cobicistat and the cytostatics gemcitabine and nab-paclitaxel in patients with advanced stage or metastatic pancreatic ductal adenocarcinoma to evaluate the combination's pharmacokinetics, safety, and efficacy

    Get PDF
    Expression of CYP3A5 protein is a basal and acquired resistance mechanism of pancreatic ductal adenocarcinoma cells conferring protection against the CYP3A and CYP2C8 substrate paclitaxel through metabolic degradation. Inhibition of CYP3A isozymes restores the cells sensitivity to paclitaxel. The combination of gemcitabine and nab-paclitaxel is an established regimen for the treatment of metastasized or locally advanced inoperable pancreatic cancer. Cobicistat is a CYP3A inhibitor developed for the pharmacoenhancement of protease inhibitors. The addition of cobicistat to gemcitabine and nab-paclitaxel may increase the antitumor effect. We will conduct a phase I dose escalation trial with a classical 3 + 3 design to investigate the safety, tolerability, and pharmacokinetics (PKs) of gemcitabine, nab-paclitaxel, and cobicistat. Although the doses of gemcitabine (1000 mg/m2) and cobicistat (150 mg) are fixed, three dose levels of nab-paclitaxel (75, 100, and 125 mg/m2) will be explored to account for a potential PK drug interaction. After the dose escalation phase, we will set the recommended dose for expansion (RDE) and treat up to nine patients in an expansion part of the trial. The trial is registered under the following identifiers EudraCT-Nr. 2019-001439-29, drks.de: DRKS00029409, and ct.gov: NCT05494866. Overcoming resistance to paclitaxel by CYP3A5 inhibition may lead to an increased efficacy of the gemcitabine and nab-paclitaxel regimen. Safety, efficacy, PK, and RDE data need to be acquired before investigating this combination in a large-scale clinical study.</p

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field
    corecore