74 research outputs found

    Leucine-rich repeat protein PRAME: expression, potential functions and clinical implications for leukaemia

    Get PDF
    PRAME/MAPE/OIP4 is a germinal tissue-specific gene that is also expressed at high levels in haematological malignancies and solid tumours. The physiological functions of PRAME in normal and tumour cells are unknown, although a role in the regulation of retinoic acid signalling has been proposed. Sequence homology and structural predictions suggest that PRAME is related to the leucine-rich repeat (LRR) family of proteins, which have diverse functions. Here we review the current knowledge of the structure/function of PRAME and its relevance in leukaemia

    eIF4A Inhibition Allows Translational Regulation of mRNAs Encoding Proteins Involved in Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the main cause of dementia in our increasingly aging population. The debilitating cognitive and behavioral symptoms characteristic of AD make it an extremely distressing illness for patients and carers. Although drugs have been developed to treat AD symptoms and to slow disease progression, there is currently no cure. The incidence of AD is predicted to increase to over one hundred million by 2050, placing a heavy burden on communities and economies, and making the development of effective therapies an urgent priority. Two proteins are thought to have major contributory roles in AD: the microtubule associated protein tau, also known as MAPT; and the amyloid-beta peptide (A-beta), a cleavage product of amyloid precursor protein (APP). Oxidative stress is also implicated in AD pathology from an early stage. By targeting eIF4A, an RNA helicase involved in translation initiation, the synthesis of APP and tau, but not neuroprotective proteins, can be simultaneously and specifically reduced, representing a novel avenue for AD intervention. We also show that protection from oxidative stress is increased upon eIF4A inhibition. We demonstrate that the reduction of these proteins is not due to changes in mRNA levels or increased protein degradation, but is a consequence of translational repression conferred by inhibition of the helicase activity of eIF4A. Inhibition of eIF4A selectively and simultaneously modulates the synthesis of proteins involved in Alzheimer's disease: reducing A-beta and tau synthesis, while increasing proteins predicted to be neuroprotective

    The human insulin receptor mRNA contains a functional internal ribosome entry segment.

    Get PDF
    Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5'-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective

    Cytotoxic potential of ethanol extract of Parquetina nigrescens on MCF-7, C4-2WT, HT 29 and HTC 116 cell lines

    Get PDF
    The cytotoxic activity of ethanol extract of Parquetina nigrescen was investigated using a (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, methylene blue and Trypan Blue exclusion assay on four human cancer cell lines, MCF-7, HT 29, HTC 116 and C4-2WT. A mitochondrial enzyme in living cells, succinate-dehydrogenase cleaves the tetrazolium ring and converts the MTT to an insoluble purple formazan whose intensity is directly proportional to the presence of viable cells in the microwell plate. Results showed a significant (p less than 0.05) cytotoxic effect of the extract in a dose dependent manner. Cytotoxicity increased with increase in the concentration of the extract used. GI50 results calculated after MTT test showed the concentration of ethanol extract of P. nigrescens required for 50% inhibition of the different cell lines as follows: MCF-7 = 2.61 Āµg/ml, C4-2WT = 8.33 Āµg/ml, HCT 29 = 3.47 Āµg/ml and HCT 116 =1.75 Āµg/ml. For the methylene blue assay, the number of viable cells present was significantly reduced (p less than 0.05) with an increase in the concentration of the extract and duration of exposure of the cells to the extract. The result of trypan blue assay showed a significant reduction (p less than 0.05) in the total count of viable cells and a significant increase (p less than 0.05) in the total count of non-viable cells over 72 h post-treatment with an extract of P. nigrescens. Comparatively, results obtained indicate that there is a correlation between the various methods adopted in establishing the antiproliferative and cytotoxic activity of ethanol extract of P. nigrescens obtained in this study

    PRAME Is a Golgi-Targeted Protein That Associates with the Elongin BC Complex and Is Upregulated by Interferon-Gamma and Bacterial PAMPs

    Get PDF
    Preferentially expressed antigen in melanoma (PRAME) has been described as a cancer-testis antigen and is associated with leukaemias and solid tumours. Here we show that PRAME gene transcription in leukaemic cell lines is rapidly induced by exposure of cells to bacterial PAMPs (pathogen associated molecular patterns) in combination with type 2 interferon (IFNĪ³). Treatment of HL60 cells with lipopolysaccharide or peptidoglycan in combination with IFNĪ³ resulted in a rapid and transient induction of PRAME transcription, and increased association of PRAME transcripts with polysomes. Moreover, treatment with PAMPs/IFNĪ³ also modulated the subcellular localisation of PRAME proteins in HL60 and U937 cells, resulting in targeting of cytoplasmic PRAME to the Golgi. Affinity purification studies revealed that PRAME associates with Elongin B and Elongin C, components of Cullin E3 ubiquitin ligase complexes. This occurs via direct interaction of PRAME with Elongin C, and PRAME colocalises with Elongins in the Golgi after PAMP/IFNĪ³ treatment. PRAME was also found to co-immunoprecipitate core histones, consistent with its partial localisation to the nucleus, and was found to bind directly to histone H3 in vitro. Thus, PRAME is upregulated by signalling pathways that are activated in response to infection/inflammation, and its product may have dual functions as a histone-binding protein, and in directing ubiquitylation of target proteins for processing in the Golgi

    Functionalized block co-polymer pro-drug nanoparticles with anti-cancer efficacy in 3D spheroids and in an orthotopic triple negative breast cancer model

    Get PDF
    Amphiphilic block co-polymers composed of poly(ethylene glycol)-co-poly(lactide)-co-poly(2-((tert-butoxycarbonyl)amino)-3-propyl carbonate) (PEG-pLA-pTBPC) are synthesized in monomer ratios and arrangements to enable assembly into nanoparticles with different sizes and architectures. These materials are based on components in clinical use, or known to be biodegradable, and retain the same fundamental chemistry across 'AB' and 'BAB' block architectures. In MCF7 and MDA-MB-231 breast cancer cells, nanoparticles of < 100 nm are internalized most rapidly, by both clathrin-and caveolin-mediated pathways. In THP-1 cells, polymer architecture and length of the hydrophilic block is the most important factor in the rate of internalization. The organ distributions of systemically injected nanoparticles in healthy mice indicate highest accumulation of the BAB-blocks in lungs and liver and the lowest accumulation in these organs of a methoxyPEG5000-pLA-pTBPC polymer. Conjugation of doxorubicin via a serum-stable urea linker to the carbonate regions of PEG5000-pLA-pTBPC generates self-assembling nanoparticles which are more cytotoxic in 2D, and penetrate further in 3D spheroids of triple negative breast cancer cells, than the free drug. In an aggressive orthotopic triple negative breast cancer mouse model, the methoxyPEG5000-pLA-pTBPC is of similar potency to free doxorubicin but with no evidence of adverse effects in terms of body weight

    Polymorphisms in NF-ĪŗB Inhibitors and Risk of Epithelial Ovarian Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nuclear factor-ĪŗB (NF-ĪŗB) family is a set of transcription factors with key roles in the induction of the inflammatory response and may be the link between inflammation and cancer development. This pathway has been shown to influence ovarian epithelial tissue repair. Inhibitors of ĪŗB (IĪŗB) prevent NF-ĪŗB activation by sequestering NF-ĪŗB proteins in the cytoplasm until IĪŗB proteins are phosphorylated and degraded.</p> <p>Methods</p> <p>We used a case-control study to evaluate the association between single nucleotide polymorphisms (SNPs) in <it>NFKBIA </it>and <it>NFKBIB </it>(the genes encoding IĪŗBĪ± and IĪŗBĪ², respectively) and risk of epithelial ovarian cancer. We queried 19 tagSNPs and putative-functional SNPs among 930 epithelial ovarian cancer cases and 1,037 controls from two studies.</p> <p>Results</p> <p>The minor allele for one synonymous SNP in <it>NFKBIA</it>, rs1957106, was associated with decreased risk (p = 0.03).</p> <p>Conclusion</p> <p>Considering the number of single-SNP tests performed and null gene-level results, we conclude that <it>NFKBIA </it>and <it>NFKBIB </it>are not likely to harbor ovarian cancer risk alleles. Due to its biological significance in ovarian cancer, additional genes encoding NF-ĪŗB subunits, activating and inhibiting molecules, and signaling molecules warrant interrogation.</p

    Translational regulation of gene expression during conditions of cell stress

    No full text
    A number of stresses, including nutrient stress, temperature shock, DNA damage, and hypoxia, can lead to changes in gene expression patterns caused by a general shutdown and reprogramming of protein synthesis. Each of these stress conditions results in selective recruitment of ribosomes to mRNAs whose protein products are required for responding to stress. This recruitment is regulated by elements within the 5ā€² and 3ā€² untranslated regions of mRNAs, including internal ribosome entry segments, upstream open reading frames, and microRNA target sites. These elements can act singly or in combination and are themselves regulated by trans-acting factors. Translational reprogramming can result in increased life span, and conversely, deregulation of these translation pathways is associated with disease including cancer and diabetes

    SF2/ASF TORCs up translation

    No full text
    No abstract available

    Re-programming of translation following cell stress allows IRES-mediated translation to predominate

    No full text
    There is now an overwhelming body of evidence to suggest that internal ribosome entry is required to maintain the expression of specific proteins during pathoā€physiological situations when capā€dependent translation is compromised, for example, following heat shock or during mitosis, hypoxia, differentiation and apoptosis. Translational profiling has been used by several groups to assess the extent to which alternative mechanisms of translation initiation selectively recruit mRNAs to polysomes during cell stress. The data from these studies have shown that under each condition 3ā€“5% of coding mRNAs remain associated with the polysomes. Importantly, the genes identified in each of these studies do not show a significant amount of overlap, suggesting that 10ā€“15% of all mRNAs have the capability for their initiation to occur via alternative mechanism(s)
    • ā€¦
    corecore