145 research outputs found

    Topological constraints on magnetostatic traps

    Full text link
    We theoretically investigate properties of magnetostatic traps for cold atoms that are subject to externally applied uniform fields. We show that Ioffe Pritchard traps and other stationary points of BB are confined to a two-dimensional curved manifold defined by det(Bi/xj)=0\det(\partial B_i/\partial x_j)=0. We describe how stationary points can be moved over the manifold by applying external uniform fields. The manifold also plays an important role in the behavior of points of zero field. Field zeroes occur in two distinct types, in separate regions of space divided by the manifold. Pairs of zeroes of opposite type can be created or annihilated on the manifold. Finally, we give examples of the manifold for cases of practical interest.Comment: 7 pages, 5 figure

    Raman transitions between hyperfine clock states in a magnetic trap

    Get PDF
    We present our experimental investigation of an optical Raman transition between the magnetic clock states of 87^{87}Rb in an atom chip magnetic trap. The transfer of atomic population is induced by a pair of diode lasers which couple the two clock states off-resonantly to an intermediate state manifold. This transition is subject to destructive interference of two excitation paths, which leads to a reduction of the effective two-photon Rabi-frequency. Furthermore, we find that the transition frequency is highly sensitive to the intensity ratio of the diode lasers. Our results are well described in terms of light shifts in the multi-level structure of 87^{87}Rb. The differential light shifts vanish at an optimal intensity ratio, which we observe as a narrowing of the transition linewidth. We also observe the temporal dynamics of the population transfer and find good agreement with a model based on the system's master equation and a Gaussian laser beam profile. Finally, we identify several sources of decoherence in our system, and discuss possible improvements.Comment: 10 pages, 7 figure

    Fully permanent magnet atom chip for Bose-Einstein condensation

    Full text link
    We describe a self-biased, fully permanent magnet atom chip used to study ultracold atoms and to produce a Bose-Einstein condensate (BEC). The magnetic trap is loaded efficiently by adiabatic transport of a magnetic trap via the application of uniform external fields. Radio frequency spectroscopy is used for in-trap analysis and to determine the temperature of the atomic cloud. The formation of a Bose-Einstein condensate is observed in time of flight images and as a narrow peak appearing in the radio frequency spectrum.Comment: changed title, substantial text modifications, journal reference adde

    Sub-Poissonian atom number fluctuations by three-body loss in mesoscopic ensembles

    Get PDF
    We show that three-body loss of trapped atoms leads to sub-Poissonian atom number fluctuations. We prepare hundreds of dense ultracold ensembles in an array of magnetic microtraps which undergo rapid three-body decay. The shot-to-shot fluctuations of the number of atoms per trap are sub-Poissonian, for ensembles comprising 50--300 atoms. The measured relative variance or Fano factor F=0.53±0.22F=0.53\pm 0.22 agrees very well with the prediction by an analytic theory (F=3/5F=3/5) and numerical calculations. These results will facilitate studies of quantum information science with mesoscopic ensembles.Comment: 4 pages, 3 figure

    Trapping of Rydberg Atoms in Tight Magnetic Microtraps

    Get PDF
    We explore the possibility to trap Rydberg atoms in tightly confining magnetic microtraps. The trapping frequencies for Rydberg atoms are expected to be influenced strongly by magnetic field gradients. We show that there are regimes where Rydberg atoms can be trapped. Moreover, we show that so-called magic trapping conditions can be found for certain states of rubidium, where both Rydberg atoms and ground state atoms have the same trapping frequencies. Magic trapping is highly beneficial for implementing quantum gate operations that require long operation times

    Resonant control of spin dynamics in ultracold quantum gases by microwave dressing

    Full text link
    We study experimentally interaction-driven spin oscillations in optical lattices in the presence of an off-resonant microwave field. We show that the energy shift induced by this microwave field can be used to control the spin oscillations by tuning the system either into resonance to achieve near-unity contrast or far away from resonance to suppress the oscillations. Finally, we propose a scheme based on this technique to create a flat sample with either singly- or doubly-occupied sites, starting from an inhomogeneous Mott insulator, where singly- and doubly-occupied sites coexist.Comment: 4 pages, 5 figure

    Classical realization of a strongly driven two-level system

    Get PDF
    A classical two-level system has been realized by coupling two propagation or two polarization modes of an optical ring resonator. This system can be driven by periodic modulation of either the coupling or the bare mode frequencies, at sufficient strength to violate the rotating-wave approximation (RWA) on resonance. Landau-Zener transitions, Rabi oscillation with non-RWA signature, and Autler-Townes doublets have been observed

    Fabrication of magnetic atom chips based on FePt

    Full text link
    We describe the design and fabrication of novel all-magnetic atom chips for use in ultracold atom trapping. The considerations leading to the choice of nanocrystalline exchange coupled FePt as best material are discussed. Using stray field calculations, we designed patterns that function as magnetic atom traps. These patterns were realized by spark erosion of FePt foil and e-beam lithography of FePt film. A mirror magneto-optical trap (MMOT) was obtained using the stray field of the foil chip.Comment: 5 pages, 5 figure

    Designs of magnetic atom-trap lattices for quantum simulation experiments

    Get PDF
    We have designed and realized magnetic trapping geometries for ultracold atoms based on permanent magnetic films. Magnetic chip based experiments give a high level of control over trap barriers and geometric boundaries in a compact experimental setup. These structures can be used to study quantum spin physics in a wide range of energies and length scales. By introducing defects into a triangular lattice, kagome and hexagonal lattice structures can be created. Rectangular lattices and (quasi-)one-dimensional structures such as ladders and diamond chain trapping potentials have also been created. Quantum spin models can be studied in all these geometries with Rydberg atoms, which allow for controlled interactions over several micrometers. We also present some nonperiodic geometries where the length scales of the traps are varied over a wide range. These tapered structures offer another way to transport large numbers of atoms adiabatically into subwavelength traps and back.Comment: 9 pages, 10 figure

    A lattice of microtraps for ultracold atoms based on patterned magnetic films

    Full text link
    We have realized a two dimensional permanent magnetic lattice of Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a single 300 nm magnetized layer of FePt, patterned using optical lithography. Our magnetic lattice consists of more than 15000 tightly confining microtraps with a density of 1250 traps/mm2^2. Simple analytical approximations for the magnetic fields produced by the lattice are used to derive relevant trap parameters. We load ultracold atoms into at least 30 lattice sites at a distance of approximately 10 μ\mum from the film surface. The present result is an important first step towards quantum information processing with neutral atoms in magnetic lattice potentials.Comment: 7 pages, 7 figure
    corecore