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Sub-Poissonian Atom-Number Fluctuations by Three-Body Loss in Mesoscopic Ensembles

S. Whitlock,* C. F. Ockeloen, and R. J. C. Spreeuw

Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
(Received 23 November 2009; published 26 March 2010)

We show that three-body loss of trapped atoms leads to sub-Poissonian atom-number fluctuations. We

prepare hundreds of dense ultracold ensembles in an array of magnetic microtraps which undergo rapid

three-body decay. The shot-to-shot fluctuations of the number of atoms per trap are sub-Poissonian, for

ensembles comprising 50–300 atoms. The measured relative variance or Fano factor F ¼ 0:53� 0:22

agrees very well with the prediction by an analytic theory (F ¼ 3=5) and numerical calculations. These

results will facilitate studies of quantum information science with mesoscopic ensembles.

DOI: 10.1103/PhysRevLett.104.120402 PACS numbers: 03.75.Be, 03.65.Ta, 05.40.�a, 42.50.Lc

The study and control of particle number fluctuations in
ultracold atomic systems has revealed a rich variety of
intriguing quantum phenomena [1–6], and offers the po-
tential to boost performance in cold atom technologies.
Motivated by the prospects for quantum metrology [7],
recent experiments have demonstrated the suppression of
relative fluctuations between small atomic samples distrib-
uted over two or more traps or internal states, leading to
number difference or spin squeezing and entanglement [8–
11]. By contrast, work on suppressing absolute number
fluctuations has been limited [12,13]. This is crucial, for
example, in quantum information science using meso-
scopic atomic ensembles [14–16], where recently observed
collective excitations produced via Rydberg dipole block-
ade [17] could be exploited. Trapped ensembles would

benefit from a
ffiffiffiffi
N

p
collective enhancement of the Rabi

frequency over single atoms, allowing fast quantum opera-
tions. However, intrinsic number fluctuations would ad-
versely affect the fidelity. Suppressed fluctuations would
yield robustness against such errors, especially if combined
with composite pulse techniques [15,18].

In this Letter we show explicitly that three-body loss
naturally reduces the shot-to-shot fluctuations of the abso-
lute atom number in a trap to sub-Poissonian levels.
Random particle loss is usually considered deleterious,
and it is not generally recognized that random loss can
suppress fluctuations, even below the Poisson level. This is
the atomic analog to intensity squeezing in optics [19]. We
use three-body loss to prepare small and well-defined
numbers of atoms in each trap, ultimately enabling the
study of collective excitations in mesoscopic ensembles.
We trap a large number of dense mesoscopic ensembles in
a lattice of microtraps which undergo rapid three-body
decay. Through sensitive absorption imaging we measure
the shot-to-shot distribution of atom numbers and find sub-
Poissonian statistics for between 50 and 300 atoms per
trap. The effects of residual imaging noise are greatly
reduced through the application of spatial correlation
analysis which exploits the lattice geometry and provides
a way to isolate atom-number fluctuations. Our results are

in very good agreement with a model for stochastic three-
body loss which takes into account the fluctuations.
For ultracold gases in magnetic microtraps, inelastic

density-dependent decay is the dominant loss process. In
87Rb this is typically due to three-body recombination [20],
whereby all three atoms are lost from the trap. As this
depends on the probability of finding three atoms together,
three-body recombination is a sensitive probe of density
fluctuations and correlations in degenerate Bose gases [21–
23]. This previous work involved the macroscopic evolu-
tion of the mean number of remaining atoms, which decays
proportional to the mean square density.
We are primarily interested in the fluctuations in the

number of remaining atoms. We model this with the fol-
lowing master equation for the probability distribution
PðN; tÞ,

dPðN; tÞ
dt

¼ X
�¼1;2;3

k�ðE� � 1Þ
�N��1

0

N!

ðN � �Þ!PðN; tÞ; (1)

which is valid for any birth-death process with multiple
reactions involving � bodies [24]. Here N0 is the initial
mean atom number in a given trap, k� are the scaled rate

constants, and the step operator E� changes N ! N þ �.
Equation (1) is a set of coupled differential equations, one
for each possible value of N. For small systems involving
up to a few hundred atoms, these equations can be solved
numerically to provide the full atom statistics (including
fluctuations) as a function of time.
In our experiments k2 � 0 and k3 � k1. For a nonde-

generate gas at temperature T in a harmonic trap, k3=N
2
0 ¼

ð2L3=
ffiffiffi
3

p Þðm �!2=2�kBTÞ3, where the mean trap frequency
in our case is �! ¼ 2�� 10:0� 0:5 kHz. The three-body
rate constant is L3 ¼ 1:8ð�0:5Þ � 10�29 cm6=s for the
F ¼ mF ¼ 2 hyperfine state of 87Rb [22].

For the mean and variance of the distribution we can
obtain approximate analytic expressions. Following [24]
we perform a system size expansion forN0 � 1 to obtain a
linear Fokker-Planck equation and derive equations of
motion for the moments. For combined one-body and
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three-body loss the evolution of the mean fraction of
remaining atoms is

� ¼ hNi
N0

¼ expð�k1tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk3=k1Þ½1� expð�2k1tÞ�

p : (2)

We express the fluctuations in terms of the Fano factor,
F ¼ ðhN2i � hNi2Þ=hNi, where the averages are taken over
realizations (F ¼ 1 for a Poisson distribution). The evolu-
tion of F in time can be written as a function of �, leading
to the differential equation:

dF

d�
¼ k3�

2½5Fð�Þ � 3� þ k1½Fð�Þ � 1�
�ðk1 þ k3�

2Þ : (3)

In the case where three-body loss dominates, we obtain the
simple solution

Fð�Þ ¼ 3

5
þ �5

�
F0 � 3

5

�
; (4)

where F0 ¼ Fð� ¼ 1Þ is the initial Fano factor. As the
atoms are lost from the trap the Fano factor asymptotes to a
value of F ! 3=5, significantly below the Poissonian level
F ¼ 1. The memory of the initial Fano factor is lost very
rapidly due to the fifth power of �, in contrast to one-body
loss where F ¼ 1þ �ðF0 � 1Þ. The result is easily gener-
alized to an arbitrary �-body process yielding an asymp-
totic Fano factor F ! �=ð2�� 1Þ. The results of this
simple analytic model are in excellent agreement with
the numerical solution to Eq. (1) for hNi * 10.

Our experiment incorporates a two-dimensional lattice
of optically resolvable magnetic microtraps produced by a
magnetic film atom chip [25,26]. We load a few thousand
atoms into each of about 250 traps, and evaporatively cool
close to quantum degeneracy (temperature�3 �K, phase-
space-density �0:3), leaving a few hundred atoms in each
trap. Because of the small size of each trap the atomic
density is high (�2� 1014 cm�3) and we observe rapid
three-body loss, despite relatively few atoms per site.
During the experiment we apply a fixed radio frequency
‘‘knife’’ (effective trap depth �35 �K) to ensure the tem-
perature of each cloud does not vary. The knife counteracts
any heating that may accompany the three-body loss. Due
to the high trap depth, the role of heating-induced loss on
the expected fluctuations is negligible.

We image the in situ distribution of atoms [Fig. 1(a)]
using absorption imaging in reflection geometry with a
circularly polarized probe laser aligned perpendicular to
the chip surface [26]. The effective pixel size in the object
plane is 3:2 �m, the optical resolution is 7:5 �m
(Rayleigh criterion), and the lattice spacings are 22 and
36 �m. The exposure time is 0.15 ms and the saturation
parameter is s ¼ 2� 0:3 (double pass). In each run of the
experiment we record an absorption image, a reference
image taken without atoms, and a stray light image, from
which we compute an optical density image of the atomic
distribution. Each image contains the centermost region of

the loaded lattice and a surrounding background region
used to quantify the imaging noise.
To measure the decay we hold the atoms for a variable

time after evaporative cooling before taking the absorption
image. Our data are composed of two sets. The first spans
from t ¼ 0 ms to t ¼ 880 ms with 40 intervals (selected
on a power-law scale) and repeated 15 times (600 runs).
The second data set spans from t ¼ 21 ms to t ¼ 2:5 s,
with 40 intervals and 19 repeats (760 runs). We extract for
each microtrap (with index m) (i) the decay of the mean
atom number hNmi and (ii) the variance hN2

mi � hNmi2.
Each optical density image is aligned to the average to
minimize the effect of jitter between shots. The atom
number in each site and each image is found by a two-
dimensional amplitude fit of a model shape function which
minimizes the influence of imaging noise. The shape func-
tions are obtained by Gaussian decomposition of the aver-
age optical density image, for each lattice cell. The
obtained shapes are smooth peaked functions which repro-
duce the observed absorption profiles [Fig. 1(a)], account-
ing for small distortions due to the underlying chip surface.
Least-squares amplitude fitting is then performed on each
image for 245 ensembles, with each fit including the 8
nearest neighbors to account for small overlaps.
Figure 1(a) shows a section of an optical density image

for a hold time of 25 ms. The evolution of hNi for a selected
trap is shown in Fig. 1(b). A fit to the data with Eq. (2)
yielding k3 ¼ 10:4� 0:4 s�1, k1 ¼ 0:52� 0:03 s�1, and
N0 ¼ 354� 4 is shown, together with the corresponding
one-body decay � ¼ expð�k1tÞ. The measured decay is in
excellent agreement with the theory to the level of �3
atoms over the full range of atom numbers probed. This
also confirms the accuracy of the absorption detection
method.
To quantify the fluctuations it is necessary to accurately

calibrate the absorption cross section. For this we compare
for each trap individually the measured cloud temperature
and three-body loss rate [26], to independently infer the
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FIG. 1 (color online). (a) Subsection of an optical density
(OD) image for t ¼ 25 ms for a single realization of the experi-
ment. (b) Decay of the mean atom number in a selected site
[highlighted in (a)]. A fit to Eq. (2) is shown (solid line) together
with the corresponding one-body loss (dashed line). The shaded
region indicates the range of atom numbers in our data for all
traps. The residuals from the fit and standard errors on the
measurement of hNi are shown below, demonstrating agreement
at the level of �3 atoms.
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atom number. In this way we determine a constant absorp-
tion cross section of ð0:32� 0:05Þ�0 (�0 ¼ 3�2=2�), in
good agreement with the expected cross section of 0:31�0

based on our imaging parameters. The maximum optical
depth for a trap containing 250 atoms is �0:1.

Figure 2 shows the measured atom-number statistics for
various hold times, corresponding to different mean atom
numbers in each trap. A histogram of the fitted number of
atoms in one specific trap for 19 repetitions of the experi-
ment at t ¼ 25 ms is shown in Fig. 2(a). The measured
hNi ¼ 280� 3 and the variance is hN2i � hNi2 ¼ 140�
50, indicated by the Gaussian distribution (solid line). The
distribution is significantly narrower than for a Poisson
distribution (dashed line), providing a direct observation
of sub-Poissonian number statistics. For longer hold times
[Fig. 2(b)] the mean number of atoms decreases due to
loss; however, the observed distribution does not become
significantly narrower. This is due to the added detection
noise contribution (dash-dotted line) which begins to
dominate the observed fluctuations for hNi & 60.

The same analysis is performed for each site and each
hold time independently to obtain the site-resolved relative
variance as a function of the mean number of atoms.
Figure 2(c) shows the results of 245� 40 observations

where each point is derived from 19 measurements. The
observed fluctuations have two main contributions: atom
noise with a constant F (Poisson noise is indicated by a
dashed line) and a detection noise contribution correspond-
ing to a fixed variance of 64 atoms2=trap=shot (dotted
line). We find for N * 100 the vast majority of data points
fall well below the combined variance for Poisson fluctua-
tions (dash-dotted line) indicating F < 1. Interestingly, the
deviation from Poisson statistics is most apparent for small
hold times (large hNi), indicating three-body loss also has a
significant effect on the fluctuations before the end of the
evaporative cooling stage.
To account for detection noise and to investigate the sub-

Poissonian noise over the full range of atom numbers in our
experiment, we perform spatial correlation analysis of the
images. Here we benefit from the lattice geometry and
separate noise components based on their respective cor-
relation length scales to isolate the atom fluctuations in our
data. We compute, for each optical density image, the two-
dimensional fluctuation correlation function �ið�Þ ¼R½niðxÞ � hniðxÞi�½niðxþ �Þ � hniðxþ �Þi�d2x, which is

then averaged over the realizations of the experiment
(indexed by i) for a given hold time (Fig. 3, inset). We
model the observed spatial distribution by niðxÞ ¼
ci
P

mNi;mpmðxÞ þ diðxÞ, where Ni;m and pmðxÞ are the

number of atoms and local shape function, respectively,
for ensemble m, ci � 1 accounts for correlated noise (due,
for example, to probe frequency noise), and diðxÞ accounts
for spatially uncorrelated imaging noise. The correlation
function h�ð�Þi shows several distinct features (Fig. 3,
inset). A narrow spike at � ¼ 0 (central red pixel) repre-
sents the uncorrelated imaging noise. This sits on top of a
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FIG. 2 (color online). Atom-number fluctuations measured for
each of 245 lattice sites during three-body decay. (a),(b) Number
distributions for one specific trap (m ¼ 138) at two hold times.
Histograms correspond to 19 measurements and each bin is 5
atoms wide. The lines indicate Gaussian fits to the data (solid
line), Poisson distributions (dashed line), and combined Poisson
and detection noise contributions (dash-dotted line). (c) The
relative variance versus hNmi for each lattice site and for each
hold time (points). Open circles indicate the measurements for
the selected trap, with a fit (including detection noise) for a
constant Fano factor F ¼ 0:57 (solid line). Arrows highlight the
two data points corresponding to the histograms (a),(b).
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FIG. 3 (color online). Lattice-averaged Fano factor �F as a
function of the mean number of atoms h �Ni. Horizontal lines
correspond to F ¼ 1 (dashed line) and to F ¼ 3=5 (dotted line)
for strong three-body loss. The solid line is a model including
three-body and one-body loss terms. The shaded region indicates
systematic uncertainties described in the text. The inset shows an
example fluctuation correlation function h�ð�Þi for t ¼ 25 ms.
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broader peak (dark central feature) representing the fluc-
tuations correlated over the length scale of approximately a
single cloud which accounts for shot-to-shot fluctuations of
the number of atoms within each trap. An array of neigh-
boring peaks, spaced at the lattice period, represents the
correlated noise across traps which we attribute to small
fluctuations of the probe detuning.

In the analysis of h�ð�Þi, we subtract the calculated
background-region correlation function and exclude the
� ¼ 0 pixel. We then fit two-dimensional Gaussian distri-
butions to the central and neighboring correlation peaks.
The lattice-averaged Fano factor (weighted by hNmi) is
given by �F ¼ ðPmhN2

mi �P
mhNmi2Þ=PmhNmi. Neglect-

ing the small overlap between neighboring shape functions
and noting that the fluctuations of Ni;m are uncorrelated

between different traps, we obtain

�F ¼
�
X0 � X�

X� þ P0

�
h �Ni; (5)

where X0 and X� are the fitted volumes of the central and
neighboring peaks of h�ð�Þi, respectively, P0 is the fitted
volume of the preaveraged autocorrelation function peakRhniðxÞihniðxþ �Þid2x, and h �Ni is the weighted average

atom number. Accounting for the overlap between neigh-
boring shape functions yields a small correction factor,
which for our lattice geometry is & 1:1.

Figure 3 shows the extracted Fano factor for two sepa-
rately analyzed data sets as a function of h �Ni during the
hold time. Horizontal lines correspond to the Poissonian
limit �F ¼ 1 (dashed line) and to the expected limit �F ¼
3=5 (dotted line) for strong three-body decay. The data
show sub-Poissonian atom-number fluctuations for h �Ni �
50 up to 300 atoms per site. A fit over this range indicates
�F ¼ 0:53 with a standard deviation of �0:08. We inde-
pendently estimate a systematic uncertainty of�0:2 incor-
porating uncertainties in the absorption cross section,
background noise contribution, and the overlap between
neighboring traps. The measured fluctuations are clearly
below the Poissonian level (dashed line) and in good
agreement with the theoretical expectation of �F ¼ 3=5
(dotted line). For h �Ni 	 50 one-body loss dominates and
we expect �F to increase to 1. The solid line is the result of
Eq. (3) including both three-body and one-body loss terms.

In conclusion, we have shown that normally undesirable
density-dependent losses in small atomic ensembles natu-
rally lead to suppressed fluctuations of the absolute atom
number to below Poissonian noise levels. Three-body de-
cay is a simple method to reliably prepare many well-
defined ultracold ensembles comprising tens to a few
hundreds of atoms. We expect this to be an ideal system
for the study of collective excitations produced, for ex-
ample, via laser-excited Rydberg states for quantum infor-
mation processing with neutral atoms [14–17]. Such
ensembles also have desirable properties for generation
of many-particle entangled states [16] and states with a
squeezed internal (spin) variable. Spin-squeezed samples

currently receive great interest as a resource for cold atom-
based metrology (interferometers, clocks), aiming to beat
the standard quantum limit [10,11].
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