21 research outputs found

    Assessment of a Novel Pediatric Resident Simulation Curriculum

    Get PDF
    Aim: To assess the efficacy of a newly implemented resident simulation curriculum at a medium sized pediatric residency program. Background: Many pediatric residency programs incorporate high-fidelity simulation into their curriculum, but there is limited data discussing the utility/educational impacts of a longitudinal/standardized/multimodal simulation curriculum. Several studies of simulation-based training have employed “self-efficacy” as a barometer for trainee education and performance 1,2,. The level of a person’s self-efficacy can influence their behavior and may be a pivotal factor in performance. We have implemented a newly devised standardized, multimodal resident simulation curriculum and used resident self-efficacy to assess its effectiveness. Methods: Participants were UMass Pediatric and Med/Peds residents. Implementation of our curriculum occurred at the start of the 2016-2017 academic year. Surveys were administered to all residents prior to curriculum implementation and at 6 months post-implementation. They assessed resident self-efficacy with regards to specific technical/procedural skills (i.e. running a code, performing intubation, etc.) and resident confidence in their ability to identify/manage specific pediatric disease presentations (i.e. respiratory failure, tachyarrhythmia, etc.). Data was pooled and averaged for each resident class separately. We predetermined a 10% change in self-efficacy to be a clinically significant difference. Results: 36 of 40 residents completed the initial survey and 31 completed the 6-month follow-up. PGY1 residents reported improved self-efficacy for 4 PALS-related skills and 8 pediatric case presentations. Similarly, PGY2 residents reported improved self-efficacy for 3 PALS-related skills and 6 pediatric case presentations. Conversely, PGY3/4 residents reported no significant change in self-efficacy for any survey question. Conclusions: These results suggest that our newly implemented longitudinal, standardized, multidisciplinary, multi-modal simulation curriculum has significantly improved resident self-efficacy related to core Pediatric Advanced Life-Support (PALS) skills/topics, with the greatest impact affecting our PGY1 class. Further study and curriculum development will attempt to address this issue

    Humic acid interferes with species recognition in zebrafish (Danio rerio)

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Chemical Ecology 33 (2007): 2090-2096, doi:10.1007/s10886-007-9377-z.Few studies have addressed how chemosensation may be impaired by chemical alterations of the environment and anthropogenic disturbance. Humic acid (HA) is a pervasive, naturally occurring organic derivative found in aquatic and terrestrial environments; human activity, however, can lead to elevated levels of HA. Recent studies suggest that environments that contain high levels of HA may hinder chemical communication. We tested the ability of adult zebrafish (Danio rerio) to discriminate between conspecific and heterospecific urinary chemical cues found in the presence and absence of HA. We show that high humic acid levels (200 mg/l) can impair the ability to differentiate conspecifics from heterospecifics. We also found that zebrafish prefer untreated water over HA-treated water. These findings suggest that, in addition to human-produced synthetic compounds, changes in the abundance of naturally occurring substances may also negatively impact natural behaviors in aquatic species by disturbing the sensory environment
    corecore