8 research outputs found

    A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization

    Get PDF
    BACKGROUND: Plant microbiomes play crucial roles in nutrient cycling and plant growth, and are shaped by a complex interplay between plants, microbes, and the environment. The role of bacteria as mediators of the 400-million-year-old partnership between the majority of land plants and, arbuscular mycorrhizal (AM) fungi is still poorly understood. Here, we test whether AM hyphae-associated bacteria influence the success of the AM symbiosis. RESULTS: Using partitioned microcosms containing field soil, we discovered that AM hyphae and roots selectively assemble their own microbiome from the surrounding soil. In two independent experiments, we identified several bacterial genera, including Devosia, that are consistently enriched on AM hyphae. Subsequently, we isolated 144 pure bacterial isolates from a mycorrhiza-rich sample of extraradical hyphae and isolated Devosia sp. ZB163 as root and hyphal colonizer. We show that this AM-associated bacterium synergistically acts with mycorrhiza on the plant root to strongly promote plant growth, nitrogen uptake, and mycorrhization. CONCLUSIONS: Our results highlight that AM fungi do not function in  isolation and that the plant-mycorrhiza symbiont can recruit beneficial bacteria that support the symbiosis. Video Abstract

    Seed tuber imprinting shapes the next-generation potato microbiome

    Get PDF
    Potato seed tubers are colonized and inhabited by soil-borne microbes, some of which can positively or negatively impact the performance of the emerging daughter plant in the next season. In this study, we investigated the intergenerational inheritance of microbiota from seed tubers to next-season daughter plants by amplicon sequencing of bacterial and fungal microbiota associated with tubers and roots of two seed potato genotypes produced in six different fields. We observed that field of production and potato genotype significantly affected the seed tuber microbiome composition and that these differences persisted during winter storage of the seed tubers. When seed tubers from different production fields were planted in a single trial field, the microbiomes of daughter tubers and roots of the emerging plants could still be distinguished according to the field of origin of the seed tuber. Remarkably, we found little evidence of direct vertical inheritance of field-unique microbes from the seed tuber to the daughter tubers or roots. Hence, we hypothesize that this intergenerational memory is imprinted in the seed tuber, resulting in differential microbiome assembly strategies depending on the field of production of the seed tuber

    Soil-borne legacies of disease in Arabidopsis thaliana

    Get PDF
    The rhizosphere microbiome of plants is essential for plant growth and health. Recent studies have shown that upon infection of leaves with a foliar pathogen, the composition of the root microbiome is altered and enriched with bacteria that in turn can systemically protect the plant against the foliar pathogen. This protective effect is extended to successive populations of plants that are grown on soil that was first conditioned by pathogen-infected plants, a phenomenon that was coined “the soil-borne legacy.” Here we provide a detailed protocol for soil-borne legacy experiments with the model plant Arabidopsis thaliana after infection with the obligate biotrophic pathogen Hyaloperonospora arabidopsidis. This protocol can easily be extended to infection with other pathogens or even infestation with herbivorous insects and can function as a blueprint for soil-borne legacy experiments with crop species

    Soil-borne legacies of disease in Arabidopsis thaliana

    No full text
    The rhizosphere microbiome of plants is essential for plant growth and health. Recent studies have shown that upon infection of leaves with a foliar pathogen, the composition of the root microbiome is altered and enriched with bacteria that in turn can systemically protect the plant against the foliar pathogen. This protective effect is extended to successive populations of plants that are grown on soil that was first conditioned by pathogen-infected plants, a phenomenon that was coined “the soil-borne legacy.” Here we provide a detailed protocol for soil-borne legacy experiments with the model plant Arabidopsis thaliana after infection with the obligate biotrophic pathogen Hyaloperonospora arabidopsidis. This protocol can easily be extended to infection with other pathogens or even infestation with herbivorous insects and can function as a blueprint for soil-borne legacy experiments with crop species

    A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization

    No full text
    Abstract: BackgroundPlant microbiomes play crucial roles in nutrient cycling and plant growth, and are shaped by a complex interplay between plants, microbes, and the environment. The role of bacteria as mediators of the 400-million-year-old partnership between the majority of land plants and, arbuscular mycorrhizal (AM) fungi is still poorly understood. Here, we test whether AM hyphae-associated bacteria influence the success of the AM symbiosis.ResultsUsing partitioned microcosms containing field soil, we discovered that AM hyphae and roots selectively assemble their own microbiome from the surrounding soil. In two independent experiments, we identified several bacterial genera, including Devosia, that are consistently enriched on AM hyphae. Subsequently, we isolated 144 pure bacterial isolates from a mycorrhiza-rich sample of extraradical hyphae and isolated Devosia sp. ZB163 as root and hyphal colonizer. We show that this AM-associated bacterium synergistically acts with mycorrhiza on the plant root to strongly promote plant growth, nitrogen uptake, and mycorrhization.ConclusionsOur results highlight that AM fungi do not function in isolation and that the plant-mycorrhiza symbiont can recruit beneficial bacteria that support the symbiosis.Aik4iJYbzAos1E2c5U4cFFVideo AbstractConclusionsOur results highlight that AM fungi do not function in isolation and that the plant-mycorrhiza symbiont can recruit beneficial bacteria that support the symbiosis.Aik4iJYbzAos1E2c5U4cFFVideo Abstrac

    Seed tuber imprinting shapes the next-generation potato microbiome

    No full text
    Abstract Background Potato seed tubers are colonized and inhabited by soil-borne microbes, that can affect the performance of the emerging daughter plant in the next season. In this study, we investigated the intergenerational inheritance of microbiota from seed tubers to next-season daughter plants under field condition by amplicon sequencing of bacterial and fungal microbiota associated with tubers and roots, and tracked the microbial transmission from different seed tuber compartments to sprouts. Results We observed that field of production and potato genotype significantly (P < 0.01) affected the composition of the seed tuber microbiome and that these differences persisted during winter storage of the seed tubers. Remarkably, when seed tubers from different production fields were planted in a single trial field, the microbiomes of daughter tubers and roots of the emerging plants could still be distinguished (P < 0.01) according to the production field of the seed tuber. Surprisingly, we found little vertical inheritance of field-unique microbes from the seed tuber to the daughter tubers and roots, constituting less than 0.2% of their respective microbial communities. However, under controlled conditions, around 98% of the sprout microbiome was found to originate from the seed tuber and had retained their field-specific patterns. Conclusions The field of production shapes the microbiome of seed tubers, emerging potato plants and even the microbiome of newly formed daughter tubers. Different compartments of seed tubers harbor distinct microbiomes. Both bacteria and fungi on seed tubers have the potential of being vertically transmitted to the sprouts, and the sprout subsequently promotes proliferation of a select number of microbes from the seed tuber. Recognizing the role of plant microbiomes in plant health, the initial microbiome of seed tubers specifically or planting materials in general is an overlooked trait. Elucidating the relative importance of the initial microbiome and the mechanisms by which the origin of planting materials affect microbiome assembly will pave the way for the development of microbiome-based predictive models that may predict the quality of seed tuber lots, ultimately facilitating microbiome-improved potato cultivation

    Additional file 1 of A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization

    No full text
    Additional file 1. Overview of the 144 bacteria isolated from hyphal samples. This file contains Unique ID, taxonomy, FASTA sequence of the hyphal bacterial isolates. Fig. S1. Effects of field management practices on soil microbial communities in Experiment I. Fig. S2. Photo of root colonization in COMP3 of a representative mesocosm at the end of Experiment II. Fig. S3. Effects of field management practices on soil microbial communities in Experiment I. Fig. S4. Bacterial ASVs with significantly different abundance between hyphal and soil samples in Experiments I (A) and II (B). Fig. S5. Isolation of AM-associated microbes using two strategies. Fig. S6. Pearson’s correlation between AM fungi root colonization (%) and plant P accumulation. Fig. S7. Schematic representation of the wet sieving protocol used to sample hyphae from COMP 5 as described in the Methods section. Fig. S8. Stereo microspore images of AM hyphae. Table S1. Effect of sample type on fungal and bacterial communities of experiment I. Table S2. Effect of preceding soil management practices in the FAST experiment on microbial communities of root, hyphal and soils samples at the end of experiment I. Table S3. Effect of the presence of plant on soil microbial communities. Table S4. Effect of sample type on fungal and bacterial communities of experiment II. Table S5. Hoagland solution ingredients. Table S6. Overview of microbial genes involved in N metabolism for which orthologs were putatively found in the genome of Devosia sp. ZB163. Table S7. Primers used for amplification of microbial ITS and 16S. Table S8. Two step PCR cycling conditions for amplifying ITS, 16S. Table S9. AM-associated bacteria isolation media. Table S10. PCR cycling conditions for amplifying 16S. Table S11. Modified Strullu and Romand (MSR) medium supplemented with 1% sucrose

    Coumarin biosynthesis genes are required after foliar pathogen infection for the creation of a microbial soil-borne legacy that primes plants for SA-dependent defenses

    Get PDF
    Abstract Plants deposit photosynthetically-fixed carbon in the rhizosphere, the thin soil layer directly around the root, thereby creating a hospitable environment for microbes. To manage the inhabitants of this nutrient-rich environment, plant roots exude and dynamically adjust microbe-attracting and -repelling compounds to stimulate specific members of the microbiome. Previously, we demonstrated that foliar infection of Arabidopsis thaliana by the biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) leads to a disease-induced modification of the rhizosphere microbiome. Soil conditioned with Hpa-infected plants provided enhanced protection against foliar downy mildew infection in a subsequent population of plants, a phenomenon dubbed the soil-borne legacy (SBL). Here, we show that for the creation of the SBL, plant-produced coumarins play a prominent role as coumarin-deficient myb72 and f6’h1 mutants were defective in creating a Hpa-induced SBL. Root exudation profiles changed significantly in Col-0 upon foliar Hpa infection, and this was accompanied by a compositional shift in the root microbiome that was significantly different from microbial shifts occurring on roots of Hpa-infected coumarin-deficient mutants. Our data further show that the Hpa-induced SBL primes Col-0 plants growing in SBL-conditioned soil for salicylic acid (SA)-dependent defenses. The SA-signaling mutants sid2 and npr1 were unresponsive to the Hpa-induced SBL, suggesting that the protective effect of the Hpa-induced shift in the root microbiome results from an induced systemic resistance that requires SA-signaling in the plant
    corecore